• unity人工智能实战(原书第2版) 人工智能 (智)豪尔赫·帕拉西奥斯 新华正版
  • unity人工智能实战(原书第2版) 人工智能 (智)豪尔赫·帕拉西奥斯 新华正版
21年品牌 40万+商家 超1.5亿件商品

unity人工智能实战(原书第2版) 人工智能 (智)豪尔赫·帕拉西奥斯 新华正版

47.8 6.1折 79 全新

库存4件

河北保定
认证卖家担保交易快速发货售后保障

作者(智)豪尔赫·帕拉西奥斯

出版社机械工业出版社

ISBN9787111670360

出版时间2021-01

版次1

装帧平装

开本16

页数232页

定价79元

货号xhwx_1202200266

上书时间2024-12-15

浩子书屋

九年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
正版特价新书
商品描述
主编:

引人入胜的交互式游戏中都有智能敌人,其智能行为是由各种技术组合产生的,这些技术统称为人工智能。在创建游戏世界和游戏中的角时,探索unity的api或内置功能,可以给游戏带来无限可能。本书涵盖了一些通用和特定的技术,可帮助你在ai开发之路上攀登新的高峰。首先,你将快速浏览在游戏环境中使用agent、编程移动以及导航的基本构建模块。接下来,你将通过实例学如何使用简单的自定义技术改进agent的决策制定和协调机制。然后,你将学如何模拟agent的视觉和听觉,用于自然和拟人的ai行为,再用图结构改进agent。本书还涵盖了新的导航网格技术,这项技术在unity 2018中引入,改良了ai和路径查找工具。你还可以用决策制定技术加强ai,运用于简单的诸如井字棋和跳棋的棋类游戏,以及安排agent之间的协作,使它们像整体一样工作。学完本书,你将在ai编程和有创意的交互式游戏开发方面获益匪浅。

目录:

译者序

前言

章  行为——智能移动

1.1  简介

1.2  创建行为模板

1.3  追赶和逃跑

1.4  为物理引擎调整agent

1.5  到达和离开

1.6  朝向物体

1.7  徘徊

1.8  按路径移动

1.9  避开agent

1.10  避开墙体

1.1  l通过权重混合多个行为

1.12  通过优先级混合多个行为

1.13  击抛体

1.14  预测抛体的着地点

1.15  锁定抛体

1.16  创建跳跃系统

第2章  导航

2.1  简介

2.2  用网格表示世界

2.3  用可视点法表示世界

2.4  用自制的导航网格表示世界

2.5  用深度优先搜索在迷宫中找到出路

2.6  用广度优先搜索在网格中找到短路径

2.7  用迪杰斯特拉算法找到短路径

2.8  用a*找到优路径

2.9  改进a*算法的内存占用:ida*

2.10  在多个帧中规划导航:时间片搜索

2.11  使路径变得滑

第3章  决策制定

3.1  简介

3.2  通过决策树做选择

3.3  实现有限机

3.4  改进有限机:分层的有限机

3.5  实现行为树

3.6  使用模糊逻辑

3.7  用面向目标的行为制定决策

3.8  实现黑板架构

3.9  尝试unity的动画机

第4章  新的navmeshapi

4.1  简介

4.2  初始化navmesh开发组件

4.3  创建和管理navmesh,用于多种类型的agent

4.4  在运行时创建和更新navmesh数据

4.5  控制navmesh实例的生命周期

4.6  连接多个navmesh实例

4.7  创建动态的带有障碍物的navmesh

4.8  用navmesh api实现某些行为

第5章  协作和战术

5.1  简介

5.2  管理队形

5.3  扩展a+算法用于协作:a* mbush

5.4  用高度分析路径点

5.5  用覆盖和可见分析路径点

5.6  自动化创建路径点

5.7  将路径点作为示例用于决策制定

5.8  实现势力图

5.9  用淹没图改进势力图

5.10  用卷积滤波器改进势力图

5.11  构建战斗循环

第6章  agent感知

6.1  简介

6.2  基于碰撞系统的视觉函数

6.3  基于碰撞系统的听觉函数

6.4  基于碰撞系统的嗅觉函数

6.5  基于图的视觉函数

6.6  基于图的听觉函数

6.7  基于图的嗅觉函数

6.8  在潜行游戏中创建感知

第7章  棋类游戏和应用的搜索ai

7.1  简介

7.2  使用博弈树类

7.3  实现minimax算法

7.4  实现negamax算法

7.5  实现ab negamax算法

7.6  实现negascout算法

7.7  实现井字游戏对手

7.8  实现跳棋游戏对手

7.9  用licb1实现石头剪刀布ai

7.10  实现无悔匹配算法

第8章  机器学

8.1  简介

8.2  使用n元语法预测器预测行动

8.3  改进预测器:分层的n元语法

8.4  学使用朴素贝叶斯分类器

8.5  实现强化学

8.6  实现人工神经网络

第9章  程序化内容生成

9.1  简介

9.2  用深度优先搜索创建迷宫

9.3  为地下城和群岛实现可构造算法

9.4  生成风景

9.5  使用n元语法生成内容

9.6  用进化算法生成敌人

0章  其他

10.1  简介

10.2  创建和管理可编写脚本的对象

10.3  更好地处理数

10.4  构建空气曲棍球游戏对手

10.5  实现竞速游戏架构

10.6  使用橡皮筋系统管理竞速难度

内容简介:

引人入胜的交互式游戏中都有智能敌人,其智能行为是由各种技术组合产生的,这些技术统称为人工智能。在创建游戏世界和游戏中的角时,探索unity的api或内置功能,可以给游戏带来无限可能。本书涵盖了一些通用和特定的技术,可帮助你在ai开发之路上攀登新的高峰。
    首先,你将快速浏览在游戏环境中使用agent、编程移动以及导航的基本构建模块。接下来,你将通过实例学如何使用简单的自定义技术改进agent的决策制定和协调机制。然后,你将学如何模拟agent的视觉和听觉,用于自然和拟人的ai行为,再用图结构改进agent。本书还涵盖了新的导航网格技术,这项技术在unity 2018中引入,改良了ai和路径查找工具。你还可以用决策制定技术加强ai,运用于简单的井字棋和跳棋等棋类游戏,以及安排agent之间的协作,使它们像整体一样工作。
    学完本书,你将在ai编程和有创意的交互式游戏开发方面获益匪浅。
    通过阅读本书,你将学到:
    使用a和ambuh这样流行的技术创建智能的路径查找agent。
    实现用于让agent互相协作的算法和用于不同目的的战术算法。
    模拟感知,让agent能够在不同环境下有更好的决策能力。
    探索用于创建决策制定agent的不同算法,而不再是简单的行为和移动。
    在处理图结构或地形时,建立agent和战术之间的协作。    通过制作手动选择器实现路径点功能。

作者简介:

    童明,雷蛇软件工程师,有十余年软件领域开发经验,前微软mvp(window开发台有价值专家),著有window 8应用开发实战,译著有unity开发实战和unity虚拟现实开发实战。

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

正版特价新书
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP