作者简介 William Gilbert Strang(威廉·吉尔伯特·斯特朗),1934年11月27日于芝加哥出生,是美国享有盛誉的数学家,在有限元理论、变分法、小波分析及线性代数方面均有所建树。他对教育的贡献尤为卓著,包括所著有的七部经典数学教材及一部专著。斯特朗自1962年担任麻省理工学院教授,其所授课程《线性代数导论》、《计算科学与工程》均在麻省理工学院开放式课程计划(MIT Open Course Ware)中收录,并获得广泛好评。
目录 1 Vectors and Matrices 1.1 Vectors and Linear Combinations 1.2 Lengths and Angles from Dot Products 1.3 Matrices and Their Column Spaces 1.4 Matrix Multiplication AB and CR 2 Solving Linear Equations Ax=b 2.1 Elimination and Back Substitution 2.2 Elimination Matrices and Inverse Matrices 2.3 Matrix Computations and A=LU 2.4 Permutations and Transposes 2.5 Derivatives and Finite Difference Matrices 3 The Four Fundamental Subspaces 3.1 Vector Spaces and Subspaces 3.2 Computing the Nullspace by Elimination: A=CR 3.3 The Complete Solution to Ax=b 3.4 Independence, Basis, and Dimension 3.5 Dimensions of the Four Subspaces 4 Orthogonality 4.1 Orthogonality of Vectors and Subspaces 4.2 Projections onto Lines and Subspaces 4.3 Least Squares Approximations 4.4 Orthonormal Bases and Gram-Schmidt 4.5 The Pseudoinverse of a Matrix 5 Determinants 5.1 3 by 3 Determinants and Cofactors 5.2 Computing and Using Determinants 5.3 Areas and Volumes by Determinants 6 Eigenvalues and Eigenvectors 6.1 Introduction to Eigenvalues: Ax=Xx 6.2 Diagonalizing a Matrix 6.3 Symmetric Positive Definite Matrices 6.4 Complex Numbers and Vectors and Matrices 6.5 Solving Linear Differential Equations 7 The Singular Value Decomposition (SVD) 7.1 Singular Values and Singular Vectors 7.2 Image Processing by Lincar Algebra 7.3 Principal Component Analysis (PCA by the SVD) 8 Linear Transformations 8.1 The Idea of a Linear Transformation 8.2 The Matrix of a Linear Transformation 8.3 The Search for a Good Basis 9 Linear Algebra in Optimization 9.1 Minimizing a Multivariable Function 9.2 Backpropagation and Stochastic Gradient Descent 9.3 Constraints, Lagrange Multipliers, Minimum Norms 9.4 Linear Programming, Game Theory, and Duality 10 Learning from Data 10.1 Piecewise Linear Learning Functions 10.2 Creating and Experimenting 10.3 Mean, Variance, and Covariance Appendix 1 The Ranks of AB and A+ B due i Appendix 2 Matrix Factorizations Appendix 3 Counting Parameters in the Basic Factorizations Appendix 4 Codes and Algorithms for Numerical Linear Algebra Appendix 5 The Jordan Form of a Square Matrix Appendix 6 Tensors Appendix 7 The Condition Number of a Matrix Problem Appendix 8 Markov Matrices and Perron-Frobenius Appendix 9 Elimination and Factorization Appendix 10 Computer Graphics Index of Equations Index of Notations Index
以下为对购买帮助不大的评价