目录 第1章 复变函数与解析函数 1.1 复数及其基本运算(complex numbers and operations) 1.1.1 复数的基本概念(concepts of complex numbers) 1.1.2 复数的表示方法(algebraic and geometric structure of complex numbers) 1.1.3 复数的基本运算(operation of complex numbers) 1.1.4 基于MATLAB的复数运算(complex number operations based on MATLAB) 1.2 复变函数(complex variable functions) 1.2.1 复变函数的概念(concepts and properties of complex variable function) 1.2.2 区域的相关概念(concepts of domain) 1.2.3 复变函数的极限和连续(limit and continuity of complex variable function) 1.3 导数及解析函数(derivative and analytic function) 1.3.1 导数(derivative) 1.3.2 函数可导的充分必要条件(sufficient conditions for derivability) 1.3.3 解析函数(analytic function) 1.3.4 初等解析函数及性质(elementary analytic function and properties) 1.3.5 运用MATLAB工具使复变函数可视化(visualization of complex function based on MATLAB) 1.4 解析函数的应用(application of analytic function) 1.4.1 解析函数在平面静电场中的应用(application of analytic function in the plane electrostatic field) 1.4.2 保角变换及其几何解释(conformal mapping and its geometric interpretations) 1.4.3 解析函数在系统稳态响应问题求解中的应用(application of analytic function in oscillation system) 第1章习题 第2章 解析函数积分 2.1 复变函数的积分(integral of complex variable function) 2.1.1 复变函数积分的基本概念(concepts of complex integral) 2.1.2 复变函数积分的性质(properties of complex integral) 2.1.3 复变函数积分实例(examples of complex integral) 2.2 柯西定理(Cauchy theorem) 2.2.1 单连通区域情形的柯西定理(Cauchy theorem in simply connected domains) 2.2.2 不定积分和原函数(indefinite integral and antiderivative) 2.2.3 复连通区域的柯西定理(Cauchy theorem in multiply connected domains) 2.2.4 复变函数积分的MATLAB运算(calculation of complex integral based on MATLAB) 2.3 柯西公式及推论(Cauchy formula and extension) 2.3.1 单连通区域的柯西积分公式(Cauchy formula in simply connected domain) 2.3.2 复连通区域的柯西积分公式(Cauchy formula in multiply connected domain) 2.3.3 无界区域中的柯西积分公式(Cauchy formula for unbounded domain) 2.3.4 柯西公式推论(extension of Cauchy formula) 2.4 柯西定理及柯西公式应用实例(application examples of Cauchy theorem and Cauchy formula) 第2章习题 第3章 复变函数级数 3.1 复数项级数(complex number series) 3.1.1 复数项级数的概念(concepts of complex number series) 3.1.2 复数项级数的性质(properties of complex number series) 3.1.3 复变函数项级数(series of complex functions) 3.2 幂级数(power series) 3.2.1 幂级数概念(concepts of power series) 3.2.2 收敛半径与收敛圆(radius of convergence and circle of convergence) 3.2.3 幂级数的性质(properties of power series) 3.3 泰勒级数(Taylor series) 3.3.1 解析函数的泰勒展开式(Taylor expansion of analytic function) 3.3.2 泰勒级数的收敛半径(radius of convergence of Taylor series)
以下为对购买帮助不大的评价