目录 1. FOUNDATIONS 1.1 Propositional and Predicate Logic - Jerrold W. Grossman 1.2 Set Theory - Jerrold W. Grossman 1.3 Functions - Jerrold W. Grossman 1.4 Relations - John G. Michaels 1.5 Proof Techniques - Susanna S. Epp 1.6 Axiomatic Program Verification - David Riley 1.7 Logic-Based Computer Programming Paradigms - Mukesh Dalal 2. COUNTING METHODS 2.1 Summary of Counting Problems - John G. Michaels 2.2 Basic Counting Techniques - Jay Yellen 2.3 Permutations and Combinations - Edward W. Packel 2.4 Inclusion/Exclusion - Robert G. Rieper 2.5 Partitions - George E. Andrews and Andrew V. Sills 2.6 Burnside/Pólya Counting Formula - Alan C. Tucker 2.7 M?bius Inversion Counting - Edward A. Bender 2.8 Young Tableaux - Bruce E. Sagan 3. SEQUENCES 3.1 Special Sequences - Thomas A. Dowling and Douglas R. Shier 3.2 Generating Functions - Ralph P. Grimaldi 3.3 Recurrence Relations - Ralph P. Grimaldi 3.4 Finite Differences - Jay Yellen 3.5 Finite Sums and Summation - Victor S. Miller 3.6 Asymptotics of Sequences - Edward A. Bender and Juanjo Rué 3.7 Mechanical Summation Procedures - Kenneth H. Rosen 4. NUMBER THEORY 4.1 Basic Concepts - Kenneth H. Rosen 4.2 Greatest Common Divisors - Kenneth H. Rosen 4.3 Congruences - Kenneth H. Rosen 4.4 Prime Numbers - Jon F. Grantham and Carl Pomerance 4.5 Factorization - Jon F. Grantham and Carl Pomerance 4.6 Arithmetic Functions - Kenneth H. Rosen 4.7 Primitive Roots and Quadratic Residues - Kenneth H. Rosen 4.8 Diophantine Equations - Bart E. Goddard 4.9 Diophantine Approximation - Jeff Shalit 4.10 Algebraic Number Theory - Lawrence C. Washington 4.11 Elliptic Curves - Lawrence C. Washington 5. ALGEBRAIC STRUCTURES - John G. Michaels 5.1 Algebraic Models 5.2 Groups 5.3 Permutation Groups 5.4 Rings 5.5 Polynomial Rings 5.6 Fields 5.7 Lattices 5.8 Boolean Algebras 6. LINEAR ALGEBRA 6.1 Vector Spaces - Joel V. Brawley 6.2 Linear Transformations - Joel V. Brawley 6.3 Matrix Algebra - Peter R. Turner
以下为对购买帮助不大的评价