时间序列分析及其应用(第2版)
¥
8
1.2折
¥
69
八品
仅1件
作者[美]罗伯特沙姆韦 著
出版社世界图书出版公司
出版时间2009-05
版次1
装帧平装
货号D3
上书时间2024-09-14
商品详情
- 品相描述:八品
图书标准信息
-
作者
[美]罗伯特沙姆韦 著
-
出版社
世界图书出版公司
-
出版时间
2009-05
-
版次
1
-
ISBN
9787510004384
-
定价
69.00元
-
装帧
平装
-
开本
大32开
-
纸张
胶版纸
-
页数
575页
-
正文语种
英语
- 【内容简介】
-
Thegoalsofthisbookaretodevelopanappreciationfortherichnessandversatilityofmoderntimeseriesanalysisasatoolforanalyzingdata,andstillmaintainacommitmenttotheoreticalintegrity,asexemplifiedbytheseminalworksofBrillinger(1981)andHannan(1970)andthetextsbyBrockwellandDavis(1991)andFuller(1995).Theadventofmorepowerfulcomputing,es-peciallyinthelastthreeyears,hasprovidedbothrealdataandnewsoftwarethatcantakeoneconsiderablybeyondthefittingofsimpletimedomainmod-els,suchashavebeenelegantlydescribedinthelandmarkworkofBoxandJenkins(seeBoxetal.,1994).Thisbookisdesignedtobeusefulasatextforcoursesintimeseriesonseveraldifferentlevelsandasareferenceworkforpractitionersfacingtheanalysisoftime-correlateddatainthephysical,biological,andsocialsciences.
- 【目录】
-
1CharacteristicsofTimeSeries
1.1Introduction
1.2TheNatureofTimeSeriesData
1.3TimeSeriesStatisticalModels
1.4MeasuresofDependence:AutocorrelationandCross-Correlation
1.5StationaryTimeSeries
1.6EstimationofCorrelation
1.7Vector-ValuedandMultidimensionalSeries
Problems
2TimeSeriesRegressionandExploratoryDataAnalysis
2.1Introduction
2.2ClassicalRegressionintheTimeSeriesContext
2.3ExploratoryDataAnalysis
2.4SmoothingintheTimeSeriesContext
Problems
3ARIMAModels
3.1Introduction
3.2AutoregressiveMovingAverageModels
3.3DifferenceEquations
3.4AutocorrelationandPartialAutocorrelationFunctions
3.5Forecasting
3.6Estimation
3.7IntegratedModelsforNonstationaryData
3.8BuildingARIMAModels
3.9MultiplicativeSeasonalARIMAModels
Problems
4SpectralAnalysisandFiltering
4.1Introduction
4.2CyclicalBehaviorandPeriodicity
4.3TheSpectralDensity
4.4PeriodogramandDiscreteFourierTransform
4.5NonparametricSpectralEstimation
4.6MultipleSeriesandCross-Spectra
4.7LinearFilters
4.8ParametricSpectralEstimation
4.9DynamicFourierAnalysisandWavelets
4.10LaggedRegressionModels
4.11SignalExtractionandOptimumFiltering
4.12SpectralAnalysisofMultidimensionalSeries
Problems
5AdditionalTimeDomainTopics
5.1Introduction
5.2LongMemoryARMAandFractionalDifferencing
5.3GARCHModels
5.4ThresholdModels
5.5RegressionwithAutocorrelatedErrors
5.6LaggedRegression:TransferFunctionModeling
5.7MultivariateARMAXModels
Problems
6State-SpaceModels
6.1Introduction
6.2Filtering,Smoothing,andForecasting
6.3MaximumLikelihoodEstimation
6.4MissingDataModifications
6.5StructuralModels:SignalExtractionandForecasting
6.6ARMAXModelsinState-SpaceForm
6.7BootstrappingState-SpaceModels
6.8DynamicLinearModelswithSwitching
6.9NonlinearandNon-normalState-SpaceModelsUsingMonteCarloMethods
6.10StochasticVolatility
6.11State-SpaceandARMAXModelsforLongitudinalDataAnalysis
Problems
7StatisticalMethodsintheFrequencyDomain
7.1Introduction
7.2SpectralMatricesandLikelihoodFunctions
7.3RegressionforJointlyStationarySeries
7.4RegressionwithDeterministicInputs
7.5RandomCoefficientRegression
7.6AnalysisofDesignedExperiments
7.7DiscriminationandClusterAnalysis
7.8PrincipalComponentsandFactorAnalysis
7.9TheSpectralEnvelope
Problems
AppendixA:LargeSampleTheory
A.1ConvergenceModes
A.2CentralLimitTheorems
A.3TheMeanandAutocorrelationFunctions
AppendixB:TimeDomainTheory
B.1HilbertSpacesandtheProjectionTheorem
B.2CausalConditionsforARMAModels
B.3LargeSampleDistributionoftheAR(p)ConditionalLeastSquaresEstimators
B.4TheWoldDecomposition
AppendixC:SpectralDomainTheory
C.1SpectralRepresentationTheorem
C.2LargeSampleDistributionoftheDFTandSmoothedPeriodogram
C.3TheComplexMultivariateNormalDistribution
References
Index
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价