William Gilbert Strang(威廉·吉尔伯特·斯特朗),1934年11月27日于芝加哥出生,是美国享有盛誉的数学家,在有限元理论、变分法、小波分析及线性代数方面均有所建树。他对教育的贡献尤为卓著,包括所著有的七部经典数学教材及一部专著。斯特朗自1962年担任麻省理工学院教授,其所授课程《线性代数导论》、《计算科学与工程》均在麻省理工学院开放式课程计划(MIT Open Course Ware)中收录,并获得广泛好评。
【目录】
Table of Contents
1 Vectors and Matrices1 1.1 Vectors and Linear Combinations2 1.2 Lengths and Angles from Dot Products9 1.3 Matrices and Their Column Spaces18 1.4 Matrix Multiplication AB and CR27 2 Solving Linear Equations Ax = b39 2.1 Elimination and Back Substitution40 2.2 Elimination Matrices and Inverse Matrices49 2.3 Matrix Computations and A = LU57 2.4 Permutations and Transposes64 2.5 Derivatives and Finite Difference Matrices74 3 The Four Fundamental Subspaces84 3.1 Vector Spaces and Subspaces85 3.2 Computing the Nullspace by Elimination: A = CR93 3.3 The Complete Solution to Ax = b104 3.4 Independence, Basis, and Dimension115 3.5 Dimensions of the Four Subspaces129 4 Orthogonality143 4.1 Orthogonality of Vectors and Subspaces144 4.2 Projections onto Lines and Subspaces151 4.3 Least Squares Approximations163 4.4 Orthonormal Bases and Gram-Schmidt176 4.5 The Pseudoinverse of a Matrix190 5 Determinants198 5.1 3 by 3 Determinants and Cofactors199 5.2 Computing and Using Determinants205 5.3 Areas and Volumes by Determinants211 6 Eigenvalues and Eigenvectors216 6.1 Introduction to Eigenvalues : Ax = λx217 6.2 Diagonalizing a Matrix232 6.3 Symmetric Positive De?nite Matrices246 6.4 Complex Numbers and Vectors and Matrices262 6.5 Solving Linear Differential Equations270 vii
viiiTable of Contents 7 The Singular Value Decomposition (SVD) 286 7.1 Singular Values and Singular Vectors287 7.2 Image Processing by Linear Algebra297 7.3 Principal Component Analysis (PCA by the SVD)302 8 Linear Transformations 308 8.1 The Idea of a Linear Transformation309 8.2 The Matrix of a Linear Transformation318 8.3 The Search for a Good Basis327 9 Linear Algebra in Optimization 335 9.1 Minimizing a Multivariable Function336 9.2 Backpropagation and Stochastic Gradient Descent346 9.3 Constraints, Lagrange Multipliers, Minimum Norms355 9.4 Linear Programming, Game Theory, and Duality364 10 Learning from Data 370 10.1 Piecewise Linear Learning Functions372 10.2 Creating and Experimenting381 10.3 Mean, Variance, and Covariance386
Appendix 1 The Ranks of AB and A + B400 Appendix 2 Matrix Factorizations401 Appendix 3 Counting Parameters in the Basic Factorizations403 Appendix 4 Codes and Algorithms for Numerical Linear Algebra404 Appendix 5 The Jordan Form of a Square Matrix405 Appendix 6 Tensors406 Appendix 7 The Condition Number of a Matrix Problem407 Appendix 8 Markov Matrices and Perron-Frobenius408 Appendix 9 Elimination and Factorization410 Appendix 10 Computer Graphics414 Index of Equations 419 Index of Notations422 Index423
以下为对购买帮助不大的评价