Contents 《博士后文库》序言 Preface Chapter1The Green Rings of Hopf Algebras1 1.1Hopf algebras1 1.2Quantum traces of morphisms4 1.3Bilinear forms on Green rings11 1.4Some ring-theoretical properties19 Chapter2The Green Rings of Spherical Hopf Algebras28 2.1A new bilinear form28 2.2Quotients of Green rings34 2.3Group-like algebra and bi-Frobenius algebra structure38 Chapter3The Stable Green Rings of Hopf Algebras43 3.1Stable Green rings43 3.2Bi-Frobenius algebra structure47 3.3Applications to Radford Hopf algebras49 Chapter4The Casimir Numbers of Green Rings55 4.1The Jacobson semisimplicity of Green rings55 4.2The Green ring of a cyclic group58 4.3The Casimir number of the Green ring of a cyclic group61 Chapter5The Casimir Numbers of Fusion Categories68 5.1Numerical invariants68 5.2Applications to Verlinde modular categories74 5.3Prime factors of Casimir numbers81 5.4Casimir numbers vs. Frobenius-Schur exponents86 Chapter6Higher Frobenius-Schur Indicators in Positive Characteristic90 6.1Characterizations of S2=id90 6.2Some properties of the element u94 6.3Higher Frobenius-Schur indicators97 6.4Monoidal invariants103 Chapter7The Grothendieck Algebras of Smash Product Hopf Algebras106 7.1Smash product Hopf algebras106 7.2Representations of smash product Hopf algebras109 7.3The Grothendieck algebras of smash product Hopf algebras112 Chapter8Invariants from the Sweedler Power Maps on Integrals122 8.1The Sweedler power maps on integrals122 8.2Polynomial invariants129 8.3Examples133 8.4Integrals of the dual of twisted Hopf algebras137 Bibliography144 Index149 编后记151
以下为对购买帮助不大的评价