国外物理名著系列25:量子物理中的格林函数(第3版)(影印版)
¥
130
九品
仅1件
作者[希腊]伊科诺毛 著
出版社科学出版社
出版时间2009-03
版次1
装帧精装
货号2-3
上书时间2024-09-04
商品详情
- 品相描述:九品
图书标准信息
-
作者
[希腊]伊科诺毛 著
-
出版社
科学出版社
-
出版时间
2009-03
-
版次
1
-
ISBN
9787030240071
-
定价
89.00元
-
装帧
精装
-
开本
16开
-
纸张
胶版纸
-
页数
477页
-
字数
600千字
-
正文语种
英语
- 【内容简介】
-
《量子物理中的格林函数(第3版)(影印版)》是国外物理名著系列之一。ThemainpartofthisbookisdevotedtothesimplestkindofGreensfunctions,namelythesolutionsoflineardifferentialequationswithadeltafunctionsource.ItisshownthatthesefamiliarGreensfunctionsareapowerfultoolforobtainingrelativelysimpleandgeneralsolutionsofbasicquantumproblemssuchasscatteringandbound-levelinformation.Thebound-leveltreatmentgivesaclearphysicalunderstandingof"difficult"questionssuchassuperconductivity,theKondoeffect,and,toalesserdegree,disorder-inducedlocalization.Themoreadvancedsubjectofmany-bodyGreensfunctionsispresentedinthelastpartofthebook.
- 【目录】
-
PartⅠGreensFunctionsinMathematicalPhysics
1Time-IndependentGreensFunctions
1.1Formalism
1.2Examples
1.2.1Three-DimensionalCase(d=3)
1.2.2Two-DimensionalCase(d=2)
1.2.3One-DimensionalCase(d=1)
1.2.4FiniteDomain(2
1.3Summary
1.3.1Definition
1.3.2BasicProperties
1.3.3MethodsofCalculation
1.3.4Use
FurtherReading
Problems
2Time-DependentGreensFunctions
2.1First-OrderCase
2.1.1Examples
2.2Second-OrderCase
2.2.1Examples
2.3Summary
2.3.1Definition
2.3.2BasicProperties
2.3.3Definition
2.3.4BasicProperties
2.3.5Use
FurtherReading
Problems
PartⅡGreensFunctionsinOne-BodyQuantumProblems
3PhysicalSignificanceofG.ApplicationtotheFree-ParticleCase
3.1GeneralRelations
3.2TheFree-Particle(Ho=p2/2m)Case
3.2.13-dCase
3.2.22-dCase
3.2.31-dCase
3.3TheFree-ParticleKleinGordonCase
3.4Summary
FurtherReading
Problems
4GreensFunctionsandPerturbationTheory
4.1Formalism
4.1.1Time-IndependentCase
4.1.2Time-DependentCase
4.2Applications
4.2.1ScatteringTheory(E>0)
4.2.2BoundStateinShallowPotentialWells(E<0)
4.2.3TheKKRMethodforElectronicCalculationsinSolids.
4.3Summary
FurtherReading
Problems
5GreensFunctionsforTight-BindingHamiltonians
5.1IntroductoryRemarks
5.2TheTight-BindingHamiltonian(TBH)
5.3GreensFunctions
5.3.1One-DimensionalLattice
5.3.2SquareLattice
5.3.3SimpleCubicLattice
5.3.4GreensFunctionsforBetheLattices(CayleyTrees)
5.4Summary
FurtherReading
Problems
6SingleImpurityScattering
6.1Formalism
6.2ExplicitResultsforaSingleBand
6.2.1Three-DimensionalCase
6.2.2Two-DimensionalCase
6.2.3One-DimensionalCase
6.3Applications
6.3.1LevelsintheGap
6.3.2TheCooperPairandSuperconductivity
6.3.3TheKondoProblem
6.3.4LatticeVibrationsinCrystalsContaining"Isotope"Impurities
6.4Summary
FurtherReading
Problems
7TwoorMoreImpurities;DisorderedSystems
7.1TwoImpurities
7.2InfiniteNumberofImpurities
7.2.1VirtualCrystalApproximation(VCA)
7.2.2Averaget-MatrixApproximation(ATA)
7.2.3CoherentPotentialApproximation(CPA)
7.2.4TheCPAforClassicalWaves
7.2.5DirectExtensionsoftheCPA
7.2.6ClusterGeneralizationsoftheCPA
7.3Summary
FurtherReading
Problems
8ElectricalConductivityandGreensFunctions
8.1ElectricalConductivityandRelatedQuantities
8.2VariousMethodsofCalculation
8.2.1PhenomenologicalApproach
8.2.2BoltzmannsEquation
8.2.3AGeneral,Independent-ParticleFormulaforConductivity
8.2.4GeneralLinearResponseTheory
8.3ConductivityinTermsofGreensFunctions
8.3.1ConductivityWithoutVertexCorrections
8.3.2CPAforVertexCorrections
8.3.3VertexCorrectionsBeyondtheCPA
8.3.4Post-CPACorrectionstoConductivity
8.4Summary
FurtherReading
Problems
9Localization,Transport,andGreensFunctions
9.1AnOverview
9.2Disorder,Diffusion,andInterference
9.3Localization
9.3.1Three-DimensionalSystems
9.3.2Two-DimensionalSystems
9.3.3One-DimensionalandQuasi-One-DimensionalSystems
9.4ConductanceandTransmission
9.5ScalingApproach
9.6OtherCalculationalTechniques
9.6.1Quasi-One-DimensionalSystemsandScaling
9.6.2LevelSpacingStatistics
9.7LocalizationandGreensFunctions
9.7.1GreensFunctionandLocalizationinOneDimension.
9.7.2RenormalizedPerturbationExpansion(RPE)andLocalization
9.7.3GreensFunctionsandTransmissionsinQuasi-One-DimensionalSystems
9.8Applications
9.9Summary
FurtherReading
Problems
PartⅢGreensFunctionsinMany-BodySystems
10Definitions
10.1Single-ParticleGreensFunctionsinTermsofFieldOperators
10.2GreensFunctionsforInteractingParticles
10.3GreensFunctionsforNoninteractingParticles
10.4Summary
FurtherReading
Problems
11PropertiesandUseoftheGreensFunctions
11.1AnalyticalPropertiesofgsandgs
11.2PhysicalSignificanceandUseofgsandgs
11.3Quasiparticles
11.4Summary
11.4.1Properties
11.4.2Use
FurtherReading
Problems
12CalculationalMethodsforg
12.1EquationofMotionMethod
12.2DiagrammaticMethodforFermionsatT=0
12.3DiagrammaticMethodforT≠0
12.4PartialSummations.DysonsEquation
12.5OtherMethodsofCalculation
12.6Summary
FurtherReading
Problems
13Applications
13.1NormalFermiSystems.LandauTheory
13.2High-DensityElectronGas
13.3DiluteFermiGas
13.4Superconductivity
13.4.1DiagrammaticApproach
13.4.2EquationofMotionApproach
13.5TheHubbardModel
13.6Summary
FurtherReading
Problems
ADiracsdeltaFunction
BDiracsbraandketNotation
CSolutionsofLaplaceandHelmholtzEquationsinVariousCoordinateSystems
C.1HelmholtzEquation
C.1.1CartesianCoordinates
C.1.2CylindricalCoordinates
C.1.3Sphericalcoordinates
C.2VectorDerivatives
C.2.1SphericalCoordinates
C.2.2CylindricalCoordinates
C.3SchrodingerEquationinCentrallySymmetric3-and2-DimensionalPotentialV
DAnalyticBehaviorofG(z)NearaBandEdge
EWannierFunctions
FRenormalizedPerturbationExpansion(RPE)
GBoltzmannsEquation
HTransferMatrix,S-Matrix,etc
ISecondQuantization
SolutionsofSelectedProblems
References
Index
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价