• 概型的几何(英文版)
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

概型的几何(英文版)

26.71 6.8折 39 全新

库存5件

山东泰安
认证卖家担保交易快速发货售后保障

作者[美]艾森邦德 著

出版社世界图书出版公司

出版时间2010-01

版次1

装帧平装

货号R8库 1-10

上书时间2025-01-10

齐鲁淘宝书店

十四年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
图书标准信息
  • 作者 [美]艾森邦德 著
  • 出版社 世界图书出版公司
  • 出版时间 2010-01
  • 版次 1
  • ISBN 9787510004742
  • 定价 39.00元
  • 装帧 平装
  • 开本 24开
  • 纸张 胶版纸
  • 页数 294页
  • 正文语种 英语
【内容简介】
  概型理论是代数几何的基础,在代数几何的经典领域不变理论和曲线模中有了较好的发展。将代数数论和代数几何有机的结合起来,实现了早期数论学者们的愿望。这种结合使得数论中的一些主要猜测得以证明。
  《概型的几何(英文版)》旨在建立起经典代数几何基本教程和概型理论之间的桥梁。例子讲解详实,努力挖掘定义背后的深层次东西。练习加深读者对内容的理解。学习《概型的几何(英文版)》的起点低,了解交换代数和代数变量的基本知识即可。《概型的几何(英文版)》揭示了概型和其他几何观点,如流形理论的联系。了解这些观点对学习《概型的几何(英文版)》是相当有益的,虽然不是必要。目次:基本定义;例子;射影概型;经典结构;局部结构;概型和函子。
【目录】
IBasicDefinitions
I.1AffineSchemes
I.1.1SchemesasSets
I.1.2SchemesasTopologicalSpaces
I.1.3AnInterludeonSheafTheoryReferencesfortheTheoryofSheaves
I.1.4SchemesasSchemes(StructureSheaves)
I.2SchemesinGeneral
I.2.1Subschemes
I.2.2TheLocalRingataPoint
I.2.3Morphisms
I.2.4TheGluingConstructionProjectiveSpace
I.3RelativeSchemes
I.3.1FiberedProducts
I.3.2TheCategoryofS-Schemes
I.3.3GlobalSpec
I.4TheFunctorofPoints

IIExamples
II.1ReducedSchemesoverAlgebraicallyClosedFields
II.1.1AffineSpaces
II.1.2LocalSchemes
II.2ReducedSchemesoverNon-AlgebraicallyClosedFields
II.3NonreducedSchemes
II.3.1DoublePoints
II.3.2MultiplePointsDegreeandMultiplicity
II.3.3EmbeddedPointsPrimaryDecomposition
II.3.4FlatFamiliesofSchemes
Limits
Examples
Flatness
II.3.5MultipleLines
II.4ArithmeticSchemes
II.4.1SpecZ
II.4.2SpecoftheRingofIntegersinaNumberField
II.4.3AffineSpacesoverSpecZ
II.4.4AConicoverSpecZ
II.4.5DoublePointsinAl

IIIProjectiveSchemes
III.1AttributesofMorphisms
III.1.1FinitenessConditions
III.1.2PropernessandSeparation
III.2ProjofaGradedRing
III.2.1TheConstructionofProjS
III.2.2ClosedSubschemesofProjR
III.2.3GlobalProj
ProjofaSheafofGraded0x-Algebras
TheProjectivizationP(ε)ofaCoherentSheafε
III.2.4TangentSpacesandTangentCones
AffineandProjectiveTangentSpaces
TangentCones
III.2.5MorphismstoProjectiveSpace
III.2.6GradedModulesandSheaves
III.2.7Grassmannians
III.2.8UniversalHypersurfaces
III.3InvariantsofProjectiveSchemes
III.3.1HilbertFunctionsandHilbertPolynomials
1II.3.2FlatnessIl:FamiliesofProjectiveSchemes
III.3.3FreeResolutions
III.3.4Examples
PointsinthePlane
Examples:DoubleLinesinGeneralandinp3
III.3.5BEzoutsTheorem
MultiplicityofIntersections
III.3.6HilbertSeries

IVClassicalConstructions
IV.1FlexesofPlaneCurves
IV.I.1Definitions
IV.1.2FlexesonSingularCurves
IV.1.3CurveswithMultipleComponents
IV.2Blow-ups
IV.2.1DefinitionsandConstructions
AnExample:BlowingupthePlane
DefinitionofBlow-upsinGeneral
TheBlowupasProj
Blow-upsalongRegularSubschemes
IV.2.2SomeClassicBlow-Ups
IV.2.3Blow-upsalongNonreducedSchemes
BlowingUpaDoublePoint
BlowingUpMultiplePoints
Thej-Function
IV.2.4Blow-upsofArithmeticSchemes
IV.2.5Project:QuadricandCubicSurfacesasBlow-ups
IV.3Fanoschemes
IV.3.1Definitions
IV.3.2LinesonQuadrics
LinesonaSmoothQuadricoveranAlgebraically
ClosedField
LinesonaQuadricCone
AQuadricDegeneratingtoTwoPlanes
MoreExamples
IV.3.3LinesonCubicSurfaces
IV.4Forms

VLocalConstructions
V.1Images
V.I.1TheImageofaMorphismofSchemes
V.1.2UniversalFormulas
V.1.3FittingIdealsandFittingImages
FittingIdeals
FittingImages
V.2Resultants
V.2:lDefinitionoftheResultant
V.2.2SylvestersDeterminant
V.3SingularSchemesandDiscriminants
V.3.1Definitions
V.3.2Discriminants
V.3.3Examples
V.4DualCurves
V.4.1Definitions
V.4.2DualsofSingularCurves
V.4.3CurveswithMultipleComponents
V.5DoublePointLoci

VISchemesandFunctors
VI.1TheFunctorofPoints
VI.I.1OpenandClosedSubfunctors
VI.1.2K-RationalPoints
VI.1.3TangentSpacestoaFunctor
VI.1.4GroupSchemes
VI.2CharacterizationofaSpacebyits~nctorofPoints
VI.2.1CharacterizationofSchemesamongFunctors
VI.2.2ParameterSpaces
TheHilbertScheme
ExamplesofHilbertSchemes
VariationsontheHilbertSchemeConstruction.
VI.2.3TangentSpacestoSchemesinTermsofTheirFunc
torsofPoints
TangentSpacestoHilbertSchemes
TangentSpacestoFanoSchemes
VI.2.4ModuliSpaces
References
Index
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP