数论IV:超越数
¥
76.41
9.6折
¥
80
九品
仅1件
作者[俄罗斯]帕尔甲 著
出版社科学出版社
出版时间2009-01
版次1
装帧精装
货号A7
上书时间2024-12-21
商品详情
- 品相描述:九品
图书标准信息
-
作者
[俄罗斯]帕尔甲 著
-
出版社
科学出版社
-
出版时间
2009-01
-
版次
1
-
ISBN
9787030235084
-
定价
80.00元
-
装帧
精装
-
开本
16开
-
纸张
胶版纸
-
页数
345页
-
字数
435千字
-
正文语种
英语
- 【内容简介】
-
《数论4:超越数(影印版)》isasurveyofthemostimportantdirectionsofresearchintranscendentalnumbertheory.Thecentraltopicsinthistheoryincludeproofsofirrationalityandtranscendenceofvariousnumbers,especiallythose,thatariseasthevaluesofspecialfunctions.Questionsofthissortgobacktoancienttimes.Anexampleistheoldproblemofsquaringthecircle,whichLindemannshowedtobcimpossiblein1882,whenhcprovedthatPiisatrandentalnumber.EulersconjecturethatthelogarithmofanalgebraicnumbertoanalgebraicbaseistranscendentalwasincludedinHilbertsfamouslistofopenproblems;thisconjecturewasprovedbyGelfondandSchneiderin1934.AmorerecentresultwasAnervssurprisingproofoftheirrationalityofξ(3)in1979.
ThequantitativeaspectsofthetheoryhaveimportantapplicationstothestudyofDiophantineequationsandotherareasofnumbertheory.Forareaderinterestedindifferentbranchesofnumbertheory,thismonographprovidesbothanoverviewofthecentralideasandtechniquesoftranscendentalnumbertheory,andalsoaguidetothemostimportantresultsandreferences.
- 【目录】
-
Notation
Introduction
0.1PreliminaryRemarks
0.2Irrationalityof2
0.3TheNumberπ
0.4TranscendentalNumbers
0.5ApproximationofAlgebraicNumbers
0.6TranscendenceQuestionsandOtherBranchesofNumberTheory
0.7TheBasicProblemsStudiedinTranscendentalNumberTheory
0.8DifferentWaysofGivingtheNumbers
0.9Methods
Chapter1ApproximationofAlgebraicNumbers
1Preliminaries
1.1ParametersforAlgebraicNumbersandPolynomials
1.2StatementoftheProblem
1.3ApproximationofRationalNumbers
1.4ContinuedFractions
1.5QuadraticIrrationalities
1.6LiouvillesTheoremandLiouvilleNumbers
1.7GeneralizationofLiouvillesTheorem
2ApproximationsofAlgebraicNumbersandThuesEquation
2.1ThuesEquation
2.2TheCasen=2
2.3TheCasen>3
3StrengtheningLiouvillesTheoremFirstVersionofThuesMethod
3.1AWaytoBoundqθ-ρ
3.2ConstructionofRationalApproximationsfor
3.3ThuesFirstResult
3.4Effectiveness
3.5EffectiveAnaloguesofTheorem1.6
3.6TheFirstEffectiveInequalitiesofBaker
3.7EffectiveBoundsonLinearFormsinAlgebraicNumbers
4StrongerandMoreGeneralVersionsofLiouvillesTheoremandThuesTheorem
4.1TheDirichletPigeonholePrinciple
4.2ThuesMethodintheGeneralCase
4.3ThuesTheoremonApproximationofAlgebraicNumbers
4.4TheNon-effectivenessofThuesTheorems
5FurtherDevelopmentofThuesMethod
5.1SiegelsTheorem
5.2TheTheoremsofDysonandGelfond
5.3DysonsLemma
5.4BombierisTheorem
6MultidimensionalVariantsoftheThue-SiegelMethod
6.1PreliminaryRemarks
6.2SiegelsTheorem
6.3TheTheoremsofSchneiderandMahler
7RothsTheorem
7.1StatementoftheTheorem
7.2TheIndexofaPolynomial
7.3OutlineoftheProofofRothsTheorem
7.4ApproximationofAlgebraicNumbersbyAlgebraicNumbers
7.5TheNumberkinRothsTheorem
7.6ApproximationbyNumbersofaSpecialType
7.7TranscendenceofCertainNumbers
7.8TheNumberofSolutionstotheInequality(62)andCertainDiophantineEquations
8LinearFormsinAlgebraicNumbersandSchmidtsTheorem
8.1ElementaryEstimates
8.2SchmidtsTheorem
8.3MinkowskisTheoremonLinearForms
8.4SchmidtsSubspaceTheorem
Chapter2EffectiveConstructionsinTranscendentalNumberTheory
Chapter3HillbertsSeventhProblem
Chapter4MultidimensionalGeneralizationofHillbertsSeventhProblem
Chapter5ValuesofAnalyticFunctionsThatSatisgyLinearDifferentialEquations
Chapter6AlgebraicIndependenceoftheValuesofAnalyticFunctionsThatHaveanAdditaonLa
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价