• 黎曼几何和几何分析(第6版)
图书条目标准图
21年品牌 40万+商家 超1.5亿件商品

黎曼几何和几何分析(第6版)

63.85 6.4折 99 九品

仅1件

北京昌平
认证卖家担保交易快速发货售后保障

作者[德]约斯特(Jost J.) 著

出版社世界图书出版公司

出版时间2015-01

版次6

装帧平装

货号A5

上书时间2024-12-01

旧书香书城

十年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 [德]约斯特(Jost J.) 著
  • 出版社 世界图书出版公司
  • 出版时间 2015-01
  • 版次 6
  • ISBN 9787510084447
  • 定价 99.00元
  • 装帧 平装
  • 开本 24开
  • 纸张 胶版纸
  • 页数 611页
  • 正文语种 英语
【内容简介】
  Riemanniangeometryischaracterized,andresearchisorientedtowardsandshapedbyconcepts(geodesics,connections,curvature,...)andobjectives,inparticulartounderstandcertainclassesof(compact)Riemannianmanifoldsdefinedbycurvatureconditions(constantorpositiveornegativecurvature,...).Bywayofcontrast,geometricanalysisisaperhapssomewhatlesssystematiccollectionoftechniques,forsolvingextremalproblemsnaturallyarisingingeometryandforinvestigatingandcharacterizingtheirsolutions.Itturnsoutthatthetwofieldscomplementeachotherverywell;geometricanalysisofferstoolsforsolvingdifficultproblemsingeometry,andRiemanniangeometrystimulatesprogressingeometricanalysisbysettingambitiousgoals.
  ItistheaimofthisbooktobeasystematicandcomprehensiveintroductiontoRiemanniangeometryandarepresentativeintroductiontothemethodsofgeometricanalysis.ItattemptsasynthesisofgeometricandanalyticmethodsinthestudyofRiemannianmanifolds.
  ThepresentworkisthesixtheditionofmytextbookonRiemanniangeometryandgeometricanalysis.IthasdevelopedonthebasisofseveralgraduatecoursesItaughtattheRuhr~UniversityBochumandtheUniversityofLeipzig.ThemainnewfeatureofthepresenteditionisasystematicpresentationofthespectrumoftheLaplaceoperatoranditsrelationwiththegeometryoftheunderlyingRiemannianmarufold.Naturally,Ihavealsoincludedseveralsmalleradditionsandminorcorrections(forwhichIamgratefultoseveralreaders).Moreover,theorganizationofthechaptershasbeensystematicallyrearranged.
【目录】
1RiemannianManifolds
1.1ManifoldsandDifferentiableManifolds
1.2TangentSpaces
1.3Submanifolds
1.4RiemannianMetrics
1.5ExistenceofGeodesicsonCompactManifolds
1.6TheHeatFlowandtheExistenceofGeodesics
1.7ExistenceofGeodesicsonCompleteManifolds
ExercisesforChapter1

2LieGroupsandVectorBundles
2.1VectorBundles
2.2IntegralCurvesofVectorFields.LieAlgebras
2.3LieGroups
2.4SpinStructures
ExercisesforChapter2

3TheLaplaceOperatorandHarmonicDifferentialForms
3.1TheLaplaceOperatoronFunctions
3.2TheSpectrumoftheLaplaceOperator
3.3TheLaplaceOperatoronForms
3.4RepresentingCohomologyClassesbyHarmonicForms
3.5Generalizations
3.6TheHeatFlowandHarmonicForms
ExercisesforChapter3

4ConnectionsandCurvature
4.1ConnectionsinVectorBundles
4.2MetricConnections.TheYang—MillsFunctional
4.3TheLevi—CivitaConnection
4.4ConnectionsforSpinStructuresandtheDiracOperator
4.5TheBochnerMethod
4.6EigenvalueEstimatesbytheMethodofLi—Yau
4.7TheGeometryofSubmanifolds
4.8MinimalSubmanifolds
ExercisesforChapter4

5GeodesicsandJacobiFields
5.1FirstandsecondVariationofArcLengthandEnergy
5.2JacobiFields
5.3ConjugatePointsandDistanceMinimizingGeodesics
5.4RiemannianManifoldsofConstantCurvature
5.5TheRauchComparisonTheoremsandOtherJacobiFieldEstimates
5.6GeometricApplicationsofJacobiFieldEstimates
5.7ApproximateFundamentalSolutionsandRepresentationFormulas
5.8TheGeometryofManifoldsofNonpositiveSectionalCurvature
ExercisesforChapter5
AShortSurveyonCurvatureandTopology

6SymmetricSpacesandKahlerManifolds
6.1ComplexProjectiveSpace
6.2KahlerManifolds
6.3TheGeometryofSymmetricSpaces
6.4SomeResultsabouttheStructureofSymmetricSpaces
6.5TheSpaceSl(n,IR)/SO(n,IR)
6.6SymmetricSpacesofNoncompactType
ExercisesforChapter6

7MorseTheoryandFloerHomology
7.1Preliminaries:AimsofMorseTheory
7.2ThePalais—SmaleCondition,ExistenceofSaddlePoints
7.3LocalAnalysis
7.4LimitsofTrajectoriesoftheGradientFlow
7.5FloerCondition,TransversalityandZ2—Cohomology
7.6OrientationsandZ—homology
7.7Homotopies
7.8Graphflows
7.9Orientations
7.10TheMorseInequalities
7.11ThePalais—SmaleConditionandtheExistenceofClosedGeodesics
ExercisesforChapter7

8HarmonicMapsbetweenRiemannianManifolds
8.1Definitions
8.2FormulasforHarmonicMaps.TheBochnerTechnique
8.3TheEnergyIntegralandWeaklyHarmonicMaps
8.4HigherRegularity
8.5ExistenceofHarmonicMapsforNonpositiveCurvature
8.6RegularityofHarmonicMapsforNonpositiveCurvature
8.7HarmonicMapUniquenessandApplications
ExercisesforChapter8

9HarmonicMapsfromRiemannSurfaces
9.1Two—dimensionalHarmonicMappings
9.2TheExistenceofHarmonicMapsinTwoDimensions
9.3RegularityResults
ExercisesforChapter9

10VariationalProblemsfromQuantumFieldTheory
10.1TheGinzburg—LandauFunctional
10.2TheSeiberg—WittenFunctional
10.3Dirac—harmonicMaps
ExercisesforChapter10

ALinearEllipticPartialDifferentialEquations
A.1SobolevSpaces
A.2LinearEllipticEquations
A.3LinearParabolicEquations
BFundamentalGroupsandCoveringSpaces
Bibliography
Index
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP