代数拓扑基础教程(英文版)
¥
20
4.0折
¥
50
九品
仅1件
作者[美]曼斯 著
出版社世界图书出版公司
出版时间2009-08
版次1
装帧平装
上书时间2024-05-01
商品详情
- 品相描述:九品
图书标准信息
-
作者
[美]曼斯 著
-
出版社
世界图书出版公司
-
出版时间
2009-08
-
版次
1
-
ISBN
9787510004803
-
定价
50.00元
-
装帧
平装
-
开本
24开
-
纸张
胶版纸
-
页数
428页
-
正文语种
英语
- 【内容简介】
-
Thisbookisintendedtoserveasatextbookforacourseinalgebraictopologyatthebeginninggraduatelevel.Themaintopicscoveredaretheclassificationofcompact2-manifolds,thefundamentalgroup,coveringspaces,singularhomologytheory,andsingularcohomologytheory(includingcupproductsandthedualitytheoremsofPoincareandAlexander).ItconsistsofmaterialfromthefirstfivechaptersoftheauthorsearlierbookAlgebraicTopology:AnIntroduction(GTM56)togetherwithalmostallofhisbookSingularHomologyTheory(GTM70).Thismaterialfromthetwoearlierbookshasbeenrevised,corrected,andbroughtuptodate.Thereisenoughhereforafull-yearcourse.
Theauthorhastriedtogiveastraightforwardtreatmentofthesubjectmatter,strippedofallunnecessarydefinitions,terminology,andtechnicalmachinery.Hehasalsotried,whereverfeasible,toemphasizethegeometricmotivationbehindthevariousconcepts.Severalapplicationsofthemethodsofalgebraictopologytoconcretegeometrical-topologicalproblemsaregiven(e.g.,Brouwerfixedpointtheorem,Brouwer-Jordanseparationtheorem,lnvarianceofDomain.Borsuk-UlamtheoremS.
- 【目录】
-
Preface
NotationandTerminology
CHAPTERⅠ
Two-DimensionalManifolds
1.Introduction
2.DefinitionandExamplesofn-Manifolds
3.Orientablevs.NonorientableManifolds
4.ExamplesofCompact,Connected2-Manifolds
5.StatementoftheClassificationTheoremforCompactSurfaces
6.TriangulationsofCompactSurfaces
7.ProofofTheorem5.1
8.TheEulerCharacteristicofaSurface
References
CHAPTERⅡTheFundamentalGroup
1.Introduction
2.BasicNotationandTerminology
3.DefinitionoftheFundamentalGroupofaSpace
4.TheEffectofaContinuousMappingontheFundamentalGroup
5.TheFundamentalGroupofaCircleISInfiniteCyclic
6.Application:TheBrouwerFixed-PointTheoreminDimension2
7.TheFundamentalGroupofaProductSpace
8.HomotopyTypeandHomotopyEquivalenceofSpaces
References
CHAPTERⅢFreeGroupsandFreeProductsofGroups
1.Introduction
2.TheWeakProductofAbelianGroups
3.FreeAbelianGroups
4.FreeProductsofGroups
5.FreeGroups
6.ThePresentationofGroupsbyGeneratorsandRelations
7.UniversalMappingProblems
References
CHAPTERⅣSeifertandVanKampenTheoremontheFundamentalGroupoftheUnionofTwoSpaces.Applications
1.Introduction
2.StatementandProofoftheTheoremofSeifertandVanKampen
3.FirstApplicationofTheorem2.1
4.SecondApplicationofTheorem2.1
5.StructureoftheFundamentalGroupofaCompactSurface
6.ApplicationtoKnotTheory
7.ProofofLemma2.4
References
CHAPTERⅤCoveringSpaces
1.Introduction
2.DefinitionandSomeExamplesofCoveringSpaces
3.LiftingofPathstoaCoveringSpace
4.TheFundamentalGroupofaCoveringSpace
5.LiftingofArbitraryMapstoaCoveringSpace
6.HomomorphismsandAutomorphismsofCoveringSpaces
10.TheExistenceTheoremforCoveringSpacesReferences
CHAPTERⅥ
BackgroundandMotivationforHomologyTheory
1.Introduction
2.SummaryofSomeoftheBasicPropertiesofHomologyTheory
3.SomeExamplesofProblemswhichMotivatedtheDevelopmentofHomologyTheoryintheNineteenthCenturyReferences
CHAPTERⅦ
DefinitionsandBasicPropertiesofHomologyTheory
1.Introduction
2.DefinitionofCubicalSingularHomologyGroups
3.TheHomomorphismInducedbyaContinuousMap
4.TheHomotopyPropertyoftheInducedHomomorphisms
5.TheExactHomologySequenceofaPair
6.TheMainPropertiesofRelativeHomologyGroups
7.TheSubdivisionofSingularCubesandtheProofofTheorem6.4
CHAPTERⅧ
DeterminationoftheHomologyGroupsofCertainSpaces:
ApplicationsandFurtherPropertiesofHomologyTheory
1.Introduction
2.HomologyGroupsofCellsandSpheres——Applications
3.HomologyofFiniteGraphs
4.HomologyofCompactSurfaces
5.TheMayer-VietorisExactSequence
6.TheJordan-BrouwerSeparationTheoremandlnvarianceofDomain
7.TheRelationbetweentheFundamentalGroupandtheFirstHomologyGroup
References
CHAPTERⅨ
HomologyofCW-Complexes
1.Introduction
2.AdjoiningCellstoaSpace
3.CW-Complexes
4.TheHomologyGroupsofaCW-Complex
5.IncidenceNumbersandOrientationsofCells
6.RegularCW-Complexes
7.DeterminationofIncidenceNumbersforaRegularCellComplex
8.HomologyGroupsofaPseudomanifoldReferences
CHAPTERⅩ
HomologywithArbitraryCoefficientGroups
1.Introduction
2.ChainComplexes
3.DefinitionandBasicPropertiesofHomologywithArbitraryCoefficients
4.IntuitiveGeometricPictureofaCyclewithCoefficientsinG
5.CoefficientHomomorphismsandCoefficientExactSequences
6.TheUniversalCoefficientTheorem
7.FurtherPropertiesofHomologywithArbitraryCoefficientsReferences
CHAPTERⅪ
TheHomologyofProductSpaces
1.Introduction
2.TheProductofCW-ComplexesandtheTensorProductofChainComplexes
3.TheSingularChainComplexofaProductSpace
4.TheHomologyoftheTensorProductofChainComplexes(TheKiinnethTheorem)
5.ProofoftheEilenberg-ZilberTheorem
6.FormulasfortheHomologyGroupsofProductSpacesReferences
点击展开
点击收起
— 没有更多了 —
以下为对购买帮助不大的评价