• 什么是数学:对思想和方法的基本研究(第4版)【未开封 】
  • 什么是数学:对思想和方法的基本研究(第4版)【未开封 】
  • 什么是数学:对思想和方法的基本研究(第4版)【未开封 】
  • 什么是数学:对思想和方法的基本研究(第4版)【未开封 】
  • 什么是数学:对思想和方法的基本研究(第4版)【未开封 】
21年品牌 40万+商家 超1.5亿件商品

什么是数学:对思想和方法的基本研究(第4版)【未开封 】

外膜破损

23.69 4.8折 49 九五品

仅1件

北京朝阳
认证卖家担保交易快速发货售后保障

作者左平、张饴慈 译

出版社复旦大学出版社

出版时间2017-03

版次4

装帧平装

货号149-55

上书时间2024-12-02

德侠书店

十五年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:九五品
图书标准信息
  • 作者 左平、张饴慈 译
  • 出版社 复旦大学出版社
  • 出版时间 2017-03
  • 版次 4
  • ISBN 9787309128109
  • 定价 49.00元
  • 装帧 平装
  • 开本 32开
  • 纸张 胶版纸
  • 页数 582页
  • 字数 469千字
  • 正文语种 简体中文
【内容简介】
  《什么是数学:对思想和方法的基本研究(第4版)》是世界著名的数学科普读物,它搜集了许多经典的数学珍品,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。无论是数学专业人士,或是愿意作数学思考者都可以阅读《什么是数学:对思想和方法的基本研究(第4版)》。
  特别对中学数学教师、大学生和高中生,《什么是数学:对思想和方法的基本研究(第4版)》都是一本极好的参考书。
【作者简介】
R.柯朗是20世纪杰出的数学家,哥廷根学派重要成员。他生前是纽约大学数学系和数学科学研究院的主任,该研究院后被命名为柯朗数学科学研究院。他写的书《数学物理方程》为每一个物理学家所熟知,而他的《微积分学》已被认为是近代写得优选的该学科的代表作。
【目录】
什么是数学

第1章 自然数

引言

§1整数的计算

1.算术的规律

2.整数的表示

3.非十进位制中的计算

*§2数系的无限性数学归纳法

1.数学归纳法原理

2.等差级数

3.等比级数

4.前n项平方和

*5.-个重要的不等式

*6.二项式定理

*7.再谈数学归纳法

第1章补充 数论

引言

§1素数

1.基本事实

2.素数的分布

§2同余

1.一般概念

2.费马定理

3.二次剩余

§3毕达哥拉斯数和费马大定理

§4欧几里得辗转相除法

1.一般理论(53)

2.在算术基本定理上的应用(58)

3.欧拉函数再谈费马定理(59)

4.连分数丢番都方程(61)

第2章 数学中的数系

引言

§1有理数

1.作为度量工具的有理数

2.数学内部对有理数的需要推广的原则

3.有理数的几何解释

§2不可公度线段无理数和极限概念

1.引言

2.十进位小数无限小数

3.极限无穷等比级数

4.有理数和循环小数

5.用区间套给出无理数的一般定义

*6.定义无理数的另一个方法戴特金分割

§3解析几何概述

1.基本原理

*2.直线方程和曲线方程

§4无限的数学分析

1.基本概念

2.有理数的可数性和连续统的不可数性

3.康托的“基数”

4.反证法

5.有关无限的悖论

6.数学的基础

§5复数

1.复数的起源

2.复数的几何解释

3.棣莫弗公式和单位根

*4.代数基本定理

*§6代数数和超越数

1.定义和存在性

**2.柳维尔定理和超越数的构造

第2章补充 集合代数

1.一般理论

2.在数理逻辑中的应用

3.在概率论中的一个应用

……

第3章 几何作图数域的代数

第4章 射影几何公理体系非欧几里得几何

第5章 拓扑学

第6章 函数和极限

第6章补充 极限和连续的一些例题

第7章 极大与极小

第8章 微积分

第8章补充

第9章 最新进展

附录 补充说明问题和习题

参考书目1

参考书目2(推荐阅读)
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP