• 孤立子理论中的哈密顿方法
  • 孤立子理论中的哈密顿方法
  • 孤立子理论中的哈密顿方法
  • 孤立子理论中的哈密顿方法
21年品牌 40万+商家 超1.5亿件商品

孤立子理论中的哈密顿方法

Classics in mathematics

238 全新

仅1件

浙江宁波
认证卖家担保交易快速发货售后保障

作者L.D.法捷耶夫(Ludwig D.Faddeev) 著

出版社世界图书出版公司

出版时间2013-03

版次1

装帧平装

上书时间2021-03-09

pecar书店

六年老店
已实名 进店 收藏店铺

   商品详情   

品相描述:全新
图书标准信息
  • 作者 L.D.法捷耶夫(Ludwig D.Faddeev) 著
  • 出版社 世界图书出版公司
  • 出版时间 2013-03
  • 版次 1
  • ISBN 9787510058264
  • 定价 89.00元
  • 装帧 平装
  • 开本 24开
  • 纸张 胶版纸
  • 页数 592页
  • 正文语种 英语
【内容简介】
  ThebookisbasedontheHamiltonianinterpretationofthemethod,hencethetitle.MethodsofdifferentialgeometryandHamiitonianformalisminparticularareverypopularinmodernmathematicalphysics.ItispreciselythegeneralHamiltonianformalismthatpresentstheinversescatteringmethodinitsmostelegantform.Moreover,theHamiltonianformalismprovidesalinkbetweenclassicalandquantummechanics.Sothebookisnotonlyanintroductiontotheclassicalsolitontheorybutalsothegroundworkforthequantumtheoryofsolitons,tobediscussedinanothervolume.
  Thebookisaddressedtospecialistsinmathematicalphysics.Thishasdeterminedthechoiceofmaterialandthelevelofmathematicalrigour.Wehopethatitwillalsobeofinteresttomathematiciansofotherspecialitiesandtotheoreticalphysicistsaswell.Still,beingamathematicaltreatiseitdoesnotcontainapplicationsofsolitontheorytospecificphysicalphenomena.
【目录】
IntroductionReferences
PartOneTheNonlinearSchrodingerEquation(NSModel)
ChapterⅠZeroCurvatureRepresentation
1.FormulationoftheNSModel
2.ZeroCurvatureCondition
3.PropertiesoftheMonodromyMatrixintheQuasi-PeriodicCase
4.LocalIntegralsoftheMotion
5.TheMonodromyMatrixintheRapidlyDecreasingCase
6.AnalyticPropertiesofTransitionCoefficients
7.TheDynamicsofTransitionCoefficients
8.TheCaseofFiniteDensity.JostSolutions
9.TheCaseofFiniteDensity.TransitionCoefficients
10.TheCaseofFiniteDensity.TimeDynamicsandIntegralsoftheMotion
1.NotesandReferences
References
ChapterⅡTheRiemannProblem
1.TheRapidlyDecreasingCase.FormulationoftheRiemannProblem
2.TheRapidlyDecreasingCase.AnalysisoftheRiemannProblem
3.ApplicationoftheInverseScatteringProblemtotheNSModel
4.RelationshipBetweentheRiemannProblemMethodandtheGelfand-Levitan-MarchenkoIntegralEquationsFormulation
5.TheRapidlyDecreasingCase.SolitonSolutions
6.SolutionoftheInverseProblemintheCaseofFiniteDensity.TheRiemannProblemMethod
7.SolutionoftheInverseProblemintheCaseofFiniteDensity.TheGelfand-Levitan-MarchenkoFormulation
8.SolitonSolutionsintheCaseofFiniteDensity
9.NotesandReferencesReferences
ChapterⅢTheHamiltonianFormulation
1.FundamentalPoissonBracketsandthe/"-Matrix
2.PoissonCommutativityoftheMotionIntegralsintheQuasi-PeriodicCase
3.DerivationoftheZeroCurvatureRepresentationfromtheFundamentalPoissonBrackets
4.IntegralsoftheMotionintheRapidlyDecreasingCaseandintheCaseofFiniteDensity
5.TheA-OperatorandaHierarchyofPoissonStructures
6.PoissonBracketsofTransitionCoefficientsintheRapidlyDecreasingCase
7.Action-AngleVariablesintheRapidlyDecreasingCase
8.SolitonDynamicsfromtheHamiltonianPointofView
9.CompleteIntegrabilityintheCaseofFiniteDensity
10.NotesandReferences
References

PartTwoGeneralTheoryofIntegrableEvolutionEquations
ChapterⅠBasicExamplesandTheirGeneralProperties
1.FormulationoftheBasicContinuousModels
2.ExamplesofLatticeModels
3.ZeroCurvatureRepresentation'saMethodforConstructingIntegrableEquations
4.GaugeEquivalenceoftheNSModel(#=-1)andtheHMModel
5.HamiltonianFormulationoftheChiralFieldEquationsandRelatedModels
6.TheRiemannProblemasaMethodforConstructingSolutionsofIntegrableEquations
7.ASchemeforConstructingtheGeneralSolutionoftheZeroCurvatureEquation.ConcludingRemarksonIntegrableEquations
8.NotesandReferences
References
ChapterⅡFundamentalContinuousModels
1.TheAuxiliaryLinearProblemfortheHMModel
2.TheInverseProblemfortheHMModel
3.HamiltonianFormulationoftheHMModel4.TheAuxiliaryLinearProblemfortheSGModel
5.TheInverseProblemfortheSGModel
6.HamiltonianFormulationoftheSGModel
ChapterⅢFundamentalModelsontheLattice
ChapterⅣLie-AlgebraicApproachtotheClassificationandAnalysisofIntegrableModelsConclusionListofSymbolsIndex
……
Conclusion
ListofSymbols
Index
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP