• 代数拓扑讲义
  • 代数拓扑讲义
  • 代数拓扑讲义
  • 代数拓扑讲义
21年品牌 40万+商家 超1.5亿件商品

代数拓扑讲义

Classics in mathematics

188 九品

仅1件

浙江宁波
认证卖家担保交易快速发货售后保障

作者[德]多德 著

出版社世界图书出版公司

出版时间2009-08

版次1

印刷时间2015-06

装帧平装

上书时间2021-03-09

pecar书店

六年老店
已实名 进店 收藏店铺

   商品详情   

品相描述:九品
图书标准信息
  • 作者 [德]多德 著
  • 出版社 世界图书出版公司
  • 出版时间 2009-08
  • 版次 1
  • ISBN 9787510004995
  • 定价 65.00元
  • 装帧 平装
  • 开本 32开
  • 纸张 胶版纸
  • 页数 377页
  • 正文语种 英语
【内容简介】
Thisisessentiallyabookonsingularhomologyandcohomologywithspecialemphasisonproductsandmanifolds.Itdoesnottreathomotopytheoryexceptforsomebasicnotions,someexamples,andsomeapplica-tionsofhomologytohomotopy.Nordoesitdealwithgeneral(ised)homology,butmanyformulationsandargumentsonsingularhomologyaresochosenthattheyalsoapplytogeneralhomology.BecauseoftheseabsencesIhavealsoomittedspectralsequences,theirmainapplicationsintopologybeingtohomotopyandgeneralhomologytheory.ech-cohomologyistreatedinasimpleadhocfashionforlocallycompactsubsetsofmanifolds;ashortsystematictreatmentforarbitraryspaces,emphasizingtheuniversalpropertyofthe(ech-procedure,iscontainedinanappendix.Thebookgrewoutofaone-yearscourseonalgebraictopology,anditcanserveasatextforsuchacourse.Forashorterbasiccourse,sayofhalfayear,onemightusechaptersⅡⅢⅣ(§1-4),Ⅴ(§I-5,7,8),Ⅵ(§3,7,9,11,12).Asprerequisitesthestudentshouldknowtheelementarypartsofgeneraltopology,abeliangrouptheory,andthelanguageofcategories-althoughourchapterⅠprovidesalittlehelpwiththelattertwo.Forpedagogicalreasons,IhavetreatedintegralhomologyonlyuptochapterⅥifareaderorteacherpreferstohavegeneralcoefficientsfromthebeginningheneedstomakeonlyminoradaptions.Astotheoutlayofthebook,thereareeightchapters,Ⅰ-Ⅷandnappendix,A;eachoftheseissubdividedintoseveral
【目录】
ChapterⅠPreliminariesonCategories,AbelianGroups,andHomotopy
§1CategoriesandFunctors
§2AbelianGroups(Exactness,DirectSums,FreeAbelianGroups)
§3Homotopy

ChapterⅡHomologyofComplexes
§1Complexes
§2ConnectingHomomorphism,ExactHomologySequence
§3Chain-Homotopy
§4FreeComplexes

ChapterⅢSingularHomology
§1StandardSimplicesandTheirLinearMaps
§2TheSingularComplex
§3SingularHomology
§4SpecialCases
§5InvarianceunderHomotopy
§6BarycentricSubdivision
§7SmallSimplices.Excision
§8Mayer-VietorisSequences

ChapterⅣApplicationstoEuclideanSpace
§1StandardMapsbetweenCellsandSpheres
§2HomologyofCellsandSpheres
§3LocalHomology
§4TheDegreeofaMap
§5LocalDegrees
§6HomologyPropertiesofNeighborhoodRetractsinIRn
§7JordanTheorem,InvarianceofDomain
§8EuclideanNeighborhoodRetracts(ENRs)

ChapterⅤCellularDecompositionandCellularHomology
§1CellularSpaces
§2CW-Spaces
§3Examples
§4HomologyPropertiesofCW-Spaces
§5TheEuler-PoincareCharacteristic
§6DescriptionofCellularChainMapsandoftheCellularBoundaryHomomorphism
§7SimplicialSpaces
§8SimplicialHomology

ChapterⅥFunctorsofComplexes
§1Modules
§2AdditiveFunctors
§3DerivedFunctors
§4UniversalCoefficientFormula
§5TensorandTorsionProducts
§6HomandExt
§7SingularHomologyandCohomologywithGeneralCoefficientGroups
§8TensorproductandBilinearity
§9TensorproductofComplexesKunnethFormula
§10HornofComplexes.HomotopyClassificationofChainMaps
§11AcyclicModels
§12TheEilenberg-ZilberTheorem.KunnethFormulasforSpaces

ChapterⅦProducts
§1TheScalarProduct
§2TheExteriorHomologyProduct
§3TheInteriorHomologyProduct(PontrjaginProduct
§4IntersectionNumbersinIRn
§5TheFixedPointIndex
§6TheLefschetz-HopfFixedPointTheorem
§7TheExteriorCohomologyProduct
§8TheInteriorCohomologyProductProduct
§9.ProductsinProjectiveSpaces.HopfMapsandHopfInvariant
§10HopfAlgebras
§llTheCohomologySlantProduct
§12TheCap-Product(Product)
§13TheHomologySlantProduct,andthePontrjaginSlantProductManffolds

ChapterⅧManifolds
§lElementaryPropertiesofManifolds
§2TheOrientationBundleofaManifold
§3HomologyofDimension≧ninn.Manifolds
§4FundamentalClassandDegree
§5Limits
§6CechCohomologyofLocallyCompactSubsetsof
§7Poincar6-LefschetzDuality
§8Examples,Applications
§9Dualityina-Manifolds
§10Transfer
§11ThomClass,ThornIsomorphism
§12TheGysinSequence.Examples
§13IntersectionofHomologyClassesKan.andCech-ExtensionsofFunctors

Appendix
§lLimitsofFunctors
§2PolyhcdtonsunderaSpace,andPartitionsofUnity
§3ExtendingFunctorsfromPolyhedronstomoreGeneralSpacesBibliographySubjectIndex

Bibliography
SubjectIndex
点击展开 点击收起

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP