• 经典力学与天体力学中的数学问题
  • 经典力学与天体力学中的数学问题
  • 经典力学与天体力学中的数学问题
21年品牌 40万+商家 超1.5亿件商品

经典力学与天体力学中的数学问题

国外数学名著系列 64

378 全新

仅1件

浙江宁波
认证卖家担保交易快速发货售后保障

作者阿诺德(Arnold.L.I) 著

出版社科学出版社

出版时间2009-01

版次1

印刷时间2009-01

印次1

印数2千册

装帧精装

上书时间2020-12-16

pecar书店

六年老店
已实名 进店 收藏店铺

   商品详情   

品相描述:全新
图书标准信息
  • 作者 阿诺德(Arnold.L.I) 著
  • 出版社 科学出版社
  • 出版时间 2009-01
  • 版次 1
  • ISBN 9787030235077
  • 定价 96.00元
  • 装帧 精装
  • 开本 16开
  • 纸张 胶版纸
  • 页数 518页
  • 字数 653千字
  • 正文语种 英语
【内容简介】
  Thisworkdescribesthefundamentalprinciples,problems,andmethodsofclassicalmechanics.Themainattentionisdevotedtothemathematicalsideofthesubject.Theauthorshaveendeavoredtogiveanexpositionstressingtheworkingapparatusofclassicalmechanics.Thebookissignificantlyexpandedcomparedtothepreviousedition.Theauthorshaveaddedtwochaptersonthevariationalprinciplesandmethodsofclassicalmechanicsaswellasontensorinvariantsofequationsofdynamics.Moreover,variousothersectionshavebeenrevised,addedorexpanded.Themainpurposeofthebookistoacquaintthereaderwithclassicalmechanicsasawhole,inbothitsclassicalanditscontemporaryaspects.Thebookaddressesallmathematicians,physicistsandengineers.
【目录】
1BasicPrinciplesofClassicalMechanics
1.1NewtonianMechanics
1.1.1Space,Time,Motion
1.1.2Newton-LaplacePrincipleofDeterminacy
1.1.3PrincipleofRelativity
1.1.4PrincipleofRelativityandForcesofInertia
1.1.5BasicDynamicalQuantities.ConservationLaws
1.2LagrangianMechanics
1.2.1PreliminaryRemarks
1.2.2VariationsandExtremals
1.2.3LagrangesEquations
1.2.4PoincaresEquations
1.2.5MotionwithConstraints
1.3HamiltonianMechanics
1.3.1SymplecticStructuresandHamiltonsEquations
1.3.2GeneratingFunctions
1.3.3SymplecticStructureoftheCotangentBundle
1.3.4TheProblemofnPointVortices
1.3.5ActioninthePhaseSpace
1.3.6IntegralInvariant
1.3.7ApplicationstoDynamicsofIdealFluid
1.4VakonomicMechanics
1.4.1LagrangesProblem
1.4.2VakonomicMechanics
1.4.3PrincipleofDeterminacy
1.4.4HamiltonsEquationsinRedundantCoordinates
1.5HamiltonianFormalismwithConstraints
1.5.1DiracsProblem
1.5.2Duality
1.6RealizationofConstraints
1.6.1VariousMethodsofRealizationofConstraints
1.6.2HolonomicConstraints
1.6.3AnisotropicFriction
1.6.4AdjointMasses
1.6.5AdjointMassesandAnisotropicFriction
1.6.6SmallMasses

2Then-BodyProblem
2.1TheTwo-BodyProblem
2.1.1Orbits
2.1.2Anomalies
2.1.3CollisionsandRegularization
2.1.4GeometryofKeplersProblem
2.2CollisionsandRegularization
2.2.1NecessaryConditionforStability
2.2.2SimultaneousCollisions
2.2.3BinaryCollisions
2.2.4SingularitiesofSolutionsofthen-BodyProblem
2.3ParticularSolutions
2.3.1CentralConfigurations
2.3.2HomographicSolutions
2.3.3EffectivePotentialandRelativeEquilibria
2.3.4PeriodicSolutionsintheCaseofBodiescfEqualMasses
2.4FinalMotionsintheThree-BodyProblem
2.4.1ClassificationoftheFinalMotionsAccordingtoChazy.
2.4.2SymmetryofthePastandFuture
2.5RestrictedThree-BodyProblem
2.5.1EquationsofMotion.TheJacobiIntegral
2.5.2RelativeEquilibriaandHillRegions
2.5.3HillsProblem
2.6ErgodicTheoremsofCelestialMechanics
2.6.1StabilityintheSenseofPoisson
2.6.2ProbabilityofCapture
2.7DynamicsinSpacesofConstantCurvature
2.7.1GeneralizedBertrandProblem
2.7.2KeplersLaws
2.7.3CelestialMechanicsinSpacesofConstantCurvature
2.7.4PotentialTheoryinSpacesofConstantCurvature

3SymmetryGroupsandOrderReduction.
3.1SymmetriesandLinearIntegrals
3.1.1NSthersTheorem
3.1.2SymmetriesinNon-HolonomicMechanics
3.1.3SymmetriesinVakonomicMechanics
3.1.4SymmetriesinHamiltonianMechanics
3.2ReductionofSystemswithSymmetries
3.2.1OrderReduction(LagrangianAspect)
3.2.2OrderReduction(HamiltonianAspect)
3.2.3Examples:FreeRotationofaRigidBodyandtheThreeBodyProblem
3.3RelativeEquilibriaandBifurcationofIntegralManifolds
3.3.1RelativeEquilibriaandEffectivePotential
3.3.2IntegralManifolds,RegionsofPossibleMotion,andBifurcationSets
3.3.3TheBifurcationSetinthePlanarThree-BodyProblem
3.3.4BifurcationSetsandIntegralManifoldsintheProblemofRotationofaHeavyRigidBodywithaFixedPoint

4VariationalPrinciplesandMethods
4.1GeometryofRegionsofPossibleMotion
4.1.1PrincipleofStationaryAbbreviatedAction
4.1.2GeometryofaNeighbourhoodoftheBoundary
4.1.3RiemannianGeometryofRegionsofPossibleMotionwithBoundary
4.2PeriodicTrajectoriesofNaturalMechanicalSystems
4.2.1RotationsandLibrations
4.2.2LibrationsinNon-Simply-ConnectedRegionsofPossibleMotion
4.2.3LibrationsinSimplyConnectedDomainsandSeifertsConjecture
4.2.4PeriodicOscillationsofaMulti-LinkPendulum
4.3PeriodicTrajectoriesofNon-ReversibleSystems
4.3.1SystemswithGyroscopicForcesandMultivaluedFunctionals
4.3.2ApplicationsoftheGeneralizedPoincareGeometricTheorem
4.4AsymptoticSolutions.ApplicationtotheTheoryofStabilityofMotion
4.4.1ExistenceofAsymptoticMotions
4.4.2ActionFunctioninaNeighbourhoodofanUnstableEquilibriumPosition
4.4.3InstabilityTheorem
4.4.4Multi-LinkPendulumwithOscillatingPointofSuspension
4.4.5HomoclinicMotionsClosetoChainsofHomoclinicMotions

5IntegrableSystemsandIntegrationMethods
5.1BriefSurveyofVariousApproachestoIntegrabilityofHamiltonianSystems
5.1.1Quadratures
5.1.2CompleteIntegrability
5.1.3NormalForms
5.2CompletelyIntegrableSystems
5.2.1Action-AngleVariables
5.2.2Non-CommutativeSetsofIntegrals
5.2.3ExamplesofCompletelyIntegrableSystems
5.3SomeMethodsofIntegrationofHamiltonianSystems
5.3.1MethodofSeparationofVariables
5.3.2MethodofL-APairs
5.4IntegrableNon-HolonomicSystems
5.4.1DifferentialEquationswithInvariantMeasure
5.4.2SomeSolvedProblemsofNon-HolonomicMechanics.

6PerturbationTheoryforIntegrableSystems
6.1AveragingofPerturbations
6.1.1AveragingPrinciple
6.1.2ProcedureforEliminatingFastVariables.Non-ResonantCase
6.1.3ProcedureforEliminatingFastVariables.Resonantase
6.1.4AveraginginSingle-FrequencySystems
6.1.5AveraginginSystemswithConstantFrequencies
6.1.6AveraginginNon-ResonantDomains
6.1.7EffectofaSingleResonance
6.1.8AveraginginTwo-FrequencySystems
6.1.9AveraginginMulti-FrequencySystems
6.1.10AveragingatSeparatrixCrossing
6.2AveraginginHamiltonianSystems
6.2.1ApplicationoftheAveragingPrinciple
6.2.2ProceduresforEliminatingFastVariables
6.3KAMTheory
6.3.1UnperturbedMotion.Non-DegeneracyConditions
6.3.2InvariantToriofthePerturbedSystem
6.3.3SystemswithTwoDegreesofFreedom
6.3.4DiffusionofSlowVariablesinMultidimensionalSystemsanditsExponentialEstimate
6.3.5DiffusionwithoutExponentiallySmallEffects
6.3.6VariantsoftheTheoremonInvariantTori
6.3.7KAMTheoryforLower-DimensionalTori
6.3.8VariationalPrincipleforInvariantTori.Cantori
6.3.9ApplicationsofKAMTheory
6.4AdiabaticInvariants
6.4.1AdiabaticInvarianceoftheActionVariableinSingle-FrequencySystems
……
7Non-IntegrableSystems
8TheoryofSmallOscillations
9TensorInvariantsofEquationsofDynamics
RecommendedReading
Bibliography
IndexofNames
SubjectIndex
点击展开 点击收起

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP