AI安全
正版新书 新华官方库房直发 可开电子发票
¥
94.73
6.4折
¥
148
全新
库存11件
作者腾讯安全朱雀实验室编著
出版社电子工业出版社
ISBN9787121439261
出版时间2022-10
版次1
装帧平装
开本16开
纸张胶版纸
页数324页
字数329千字
定价148元
货号SC:9787121439261
上书时间2024-11-27
商品详情
- 品相描述:全新
-
全新正版 提供发票
- 商品描述
-
作者简介:
腾讯安全朱雀实验室专注于AI 安全技术研究及应用,围绕对抗机器学习、AI模型安全、深伪检测等方面取得了一系列研究成果,议题入选CVPR、ICLR、CanSecWest、HITB、POC、XCon等国内外很好会议,面向行业发布了业内少有AI安全威胁风险矩阵,持续聚焦AI在产业应用的安全问题,助力AI安全技术创新。
主编推荐:
"腾讯安全朱雀实验室首著。
前沿【攻击方法和原理】分析,原汁原味的【实战案例】呈现。
全书涵盖六大主题十四个实战案例:对抗样本攻击、数据投毒攻击、模型后门攻击、预训练模型安全、AI数据隐私窃取、AI应用失控风险。
全彩很好设计 真实视觉体验。"
媒体评论:
"推荐序一
人工智能(AI)被认为是引领第四次工业革命进入智能化时代的核心驱动技术。AI理论和技术日益成熟,应用领域也被不断扩大,它改变了数字、物理和生物世界,形成了我称为的“虚实集成世界” (Integrated Physical-Digital World, IPhD)。毫无疑问,AI正在帮助各行各业实现智能化升级,并创造很多新的机会。我相信AI将带给我们更美好的未来。
但我们也清楚地认识到,这一波的AI技术主要是基于深度学习的系统,非常依赖于大模型、大数据和云服务。AI大模型参数多、可解释性差,比较容易遭到对抗样本攻击;大数据噪声大,质量难保证,可能引来攻击者数据投毒;云服务虽然给我们提供了便宜的算力和便捷的生活,但也给攻击者提供了便利,造成隐私窃取和应用失控。
我在腾讯的同事——朱雀实验室的小伙伴们,从2019年开始研究AI安全,涉及模型安全、AI滥用、AI伦理等,同时也在构建和完善AI安全蓝图,并将这些技术和应用落地。这本书凝聚了他们在AI安全技术的研究和实践中积累的多年经验。我相信他们踩过的“坑”和成功的案例将给AI安全领域的研究人员和管理人员带来极大的帮助。
张正友
腾讯首席科学家、腾讯AI Lab和腾讯Robotics X实验室主任
推荐序二
由于硬件和算法的快速发展,以深度学习为代表的各类人工智能技术已经被广泛用于人脸识别、自动驾驶、物联网等各类重要应用中。由于其内生的脆弱性,人工智能技术的发展往往也会带来新的安全问题。然而,人工智能技术的内源安全性问题往往无法通过传统信息安全的技术来直接解决。因此,系统性地研究人工智能技术中可能存在的安全性问题和其对应的解决方案具有重要意义。
人工智能内源安全性问题的相关探索可以追溯到20世纪中叶对各类传统机器学习算法鲁棒性和稳定性的研究。近代人工智能内源安全性研究主要针对于以深度神经网络为代表
...
内容简介:
本书首先介绍AI与AI安全的发展起源、世界主要经济体的AI发展战略规划,给出AI安全技术发展脉络和框架,并从AI安全实战出发,重点围绕对抗样本、数据投毒、模型后门等攻击技术进行案例剖析和技术讲解;然后对预训练模型中的风险和防御、AI数据隐私窃取攻击技术、AI应用失控的风险和防御进行详细分析,并佐以实战案例和数据;最后对AI安全的未来发展进行展望,探讨AI安全的风险、机遇、发展理念和产业构想。
本书适合AI和AI安全领域的研究人员、管理人员,以及需要实战案例辅助学习的广大爱好者阅读。
目录:
第1章 AI安全发展概述
1.1 AI与安全衍生
1.1.1 AI发展图谱
1.1.2 各国AI发展战略
1.1.3 AI行业标准
1.1.4 AI安全的衍生本质——科林格里奇困境
1.2 AI安全技术发展脉络
第2章 对抗样本攻击技术揭秘
2.1 对抗样本攻击的基本原理
2.1.1 形式化定义与理解
2.1.2 对抗样本攻击的分类
2.1.3 对抗样本攻击的常见衡量指标
2.2 对抗样本攻击技巧与攻击思路
2.2.1 白盒攻击算法
2.2.2 黑盒攻击算法
2.3 实战案例:语音、图像、文本识别引擎绕过
2.3.1 语音识别引擎绕过
2.3.2 图像识别引擎绕过
2.3.3 文本识别引擎绕过
2.4 实战案例:物理世界中的对抗样本攻击
2.4.1 目标检测原理
2.4.2 目标检测攻击原理
2.4.3 目标检测攻击实现
2.4.4 攻击效果展示
2.5 案例总结
第3章 数据投毒攻击技术揭秘
3.1 数据投毒攻击概念
3.2 数据投毒攻击的基本原理
3.2.1 形式化定义与理解
3.2.2 数据投毒攻击的范围与思路
3.3 数据投毒攻击技术发展
3.3.1 传统数据投毒攻击介绍
3.3.2 数据投毒攻击约束
3.3.3 数据投毒攻击效率优化
3.3.4 数据投毒攻击迁移能力提升
3.4 实战案例:利用数据投毒攻击图像分类模型
3.4.1 案例背景<
...
— 没有更多了 —
全新正版 提供发票
以下为对购买帮助不大的评价