• 大规模语言模型 从理论到实践
21年品牌 40万+商家 超1.5亿件商品

大规模语言模型 从理论到实践

正版新书 新华官方库房直发 可开电子发票

69.76 6.4折 109 全新

库存4件

湖北武汉
认证卖家担保交易快速发货售后保障

作者张奇 等

出版社电子工业出版社

ISBN9787121467059

出版时间2024-01

版次1

装帧平装

开本16开

纸张胶版纸

页数320页

字数465千字

定价109元

货号SC:9787121467059

上书时间2024-11-01

沈成书店

十二年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
全新正版 提供发票
商品描述
作者简介:
"张奇
复旦大学计算机科学技术学院教授、博士生导师。主要研究方向是自然语言处理和信息检索。兼任中国中文信息学会理事,中国中文信息学会信息检索专委会常务委员,中国人工智能学会青年工作委员会常务委员。多次担任ACL、EMNLP、COLING、全国信息检索大会等重要国际、国内会议的程序委员会主席、领域主席、讲习班主席等。承担国家重点研发计划课题、国家自然科学基金、上海市科委等多个项目,在国际重要学术刊物和会议上发表论文150余篇,获得美国授权专利4项。获得WSDM 2014很好论文提名奖、COLING 2018领域奖、NLPCC 2019杰出论文奖、COLING 2022杰出论文奖。获得上海市“晨光计划”人才计划、复旦大学“很好2025”人才培育计划等支持,获得钱伟长中文信息处理科学技术一等奖、汉王青年创新一等奖、上海市科技进步二等奖、教育部科技进步二等奖、ACM上海新星提名奖、IBM Faculty Award等奖项。

桂韬
复旦大学自然语言处理实验室副研究员、硕士生导师。研究领域为预训练模型、信息抽取和鲁棒模型。在高水平国际学术期刊和会议上发表论文40余篇,主持国家自然科学基金、计算机学会、人工智能学会的多个基金项目。获得钱伟长中文信息处理科学技术一等奖、中国中文信息学会优秀博士论文奖、COLING 2018很好论文提名奖、NLPCC 2019杰出论文奖,入选第七届中国科协青年人才托举工程,入选上海市2023年度“科技创新行动计划”启明星项目,获得2023年度世界人工智能大会云帆奖。

郑锐
复旦大学计算机科学技术学院博士生,导师为张奇教授。研究兴趣包括大模型对齐、鲁棒性等。MOSS-RLHF开源项目负责人,文本鲁棒性评测工具TextFlint的核心贡献者,在ACL、EMNLP、COLING等国际会议上发表学术论文十余篇。

黄萱菁
复旦大学计算机科学技
...
主编推荐:
"√解码大语言模型奥秘,引领机器智能新时代!
√解读ChatGPT背后的核心技术!
√配全书PPT课件
√详细介绍构建LLM的四个主要阶段:预训练、有监督微调、奖励建模和强化学习。每个阶段都有算法、代码、数据、难点及实践经验的详细讨论。"
内容简介:
本书详细介绍了构建大语言模型的四个主要阶段:预训练、有监督微调、奖励建模和强化学习。每个阶段都有算法、代码、数据、难点及实践经验的详细讨论。

本书以大语言模型的基础理论开篇,探讨了大语言模型预训练数据的构建方法,以及大语言模型如何理解并服从人类指令,介绍了大语言模型的应用和评估方法,为读者提供了更全面的视野。

本书旨在为对大语言模型感兴趣的读者提供入门指南,也可作为高年级本科生和研究生自然语言处理相关课程的补充教材。

目录:
第1章 绪论 1

1.1 大语言模型的基本概念 1

1.2 大语言模型的发展历程 4

1.3 大语言模型的构建流程 8

1.4 本书的内容安排 11

第2章 大语言模型基础 13

2.1 Transformer结构 13

2.1.1 嵌入表示层 14

2.1.2 注意力层 16

2.1.3 前馈层 18

2.1.4 残差连接与层归一化 19

2.1.5 编码器和解码器结构 20

2.2 生成式预训练语言模型GPT 25

2.2.1 无监督预训练 26

2.2.2 有监督下游任务微调 27

2.2.3 基于HuggingFace的预训练语言模型实践 27

2.3 大语言模型的结构 33

2.3.1 LLaMA的模型结构 34

2.3.2 注意力机制优化 40

2.4 实践思考 47

第3章 大语言模型预训练数据 49

3.1 数据来源 49

3.1.1 通用数据 50

3.1.2 专业数据 51

3.2 数据处理 52

3.2.1 质量过滤 52

3.2.2 冗余去除 53

3.2.3 
...

—  没有更多了  —

以下为对购买帮助不大的评价

全新正版 提供发票
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP