• 精通特征工程
21年品牌 40万+商家 超1.5亿件商品

精通特征工程

正版新书 新华官方库房直发 可开电子发票

41.89 7.1折 59 全新

库存3件

湖北武汉
认证卖家担保交易快速发货售后保障

作者[美]爱丽丝·郑(Alice Zheng) 阿曼达·卡萨丽(Amanda Casari)

出版社人民邮电出版社

ISBN9787115509680

出版时间2019-04

版次1

装帧平装

开本16开

纸张胶版纸

页数156页

字数254千字

定价59元

货号SC:9787115509680

上书时间2024-10-31

沈成书店

十二年老店
已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
全新正版 提供发票
商品描述
作者简介:
爱丽丝·郑(Alice Zheng) 亚马逊广告平台建模和优化团队负责人,应用机器学习、生成算法和平台开发领域的技术领dao者,前微软研究院机器学习研究员。

阿曼达·卡萨丽(Amanda Casari) 谷歌云开发者关系工程经理,曾是Concur Labs的产品经理和数据科学家,在数据科学、机器学习、复杂系统和机器人等多个领域都有丰富经验。
主编推荐:
特征工程是机器学习流程中至关重要的一个环节,然而专门讨论这个话题的著作却很少。本书旨在填补这一空白,着重阐明特征工程的基本原则,介绍大量特征工程技术,教你从原始数据中提取出正确的特征并将其转换为适合机器学习模型的格式,从而轻松构建模型,增强机器学习算法的效果。

然而,本书并非单纯地讲述特征工程的基本原则,而是通过大量示例和练习将重点放在了实际应用上。每一章都集中研究一个数据问题:如何表示文本数据或图像数据,如何为自动生成的特征降低维度,何时以及如何对特征进行标准化,等等。最后一章通过一个完整的例子演示了多种特征工程技术的实际应用。书中所有代码示例均是用Python编写的,涉及NumPy、Pandas、scikit-learn和Matplotlib等程序包。

- 数值型数据的特征工程:过滤、分箱、缩放、对数变换和指数变换
- 自然文本技术:词袋、n元词与短语检测
- 基于频率的过滤和特征缩放
- 分类变量编码技术:特征散列化与分箱计数
- 使用主成分分析的基于模型的特征工程
- 模型堆叠与k-均值特征化
- 图像特征提取:人工提取与深度学习
媒体评论:
“数据预处理和特征工程已成为很多应用中模型性能的决定因素。我十分欣喜地看到,终于有一本专门讨论这个话题的书了。Alice和Amanda条分缕析地介绍了多种常用技术之间的微妙差异。”

——Andreas C. Müller,scikit-learn库核心贡献者,《Python机器学习基础教程》合著者
内容简介:
本书介绍大量特征工程技术,阐明特征工程的基本原则。主要内容包括:机器学习流程中
的基本概念,数值型数据的基础特征工程,自然文本的特征工程,词频- 逆文档频率,高效的分类变量编码技术,主成分分析,模型堆叠,图像处理,等等。
目录:
前言     ix
第  1 章 机器学习流程  1
1.1  数据  1
1.2  任务  1
1.3  模型  2
1.4  特征  3
1.5  模型评价  3
第  2 章 简单而又奇妙的数值  4
2.1  标量、向量和空间  5
2.2  处理计数  7
2.2.1  二值化  7
2.2.2  区间量化(分箱)  9
2.3  对数变换  13
2.3.1  对数变换实战  16
2.3.2  指数变换:对数变换的推广  19
2.4  特征缩放/ 归一化  24
2.4.1  min-max 缩放  24
2.4.2  特征标准化/ 方差缩放  24
2.4.3  2
归一化  25
2.5  交互特征  28
2.6  特征选择  30
2.7  小结  31
2.8  参
...

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

全新正版 提供发票
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP