• 机器学习高级实践:计算广告、供需预测、智能营销、动态定价王聪颖 谢志辉机械工业9787111736547全新正版
  • 机器学习高级实践:计算广告、供需预测、智能营销、动态定价王聪颖 谢志辉机械工业9787111736547全新正版
  • 机器学习高级实践:计算广告、供需预测、智能营销、动态定价王聪颖 谢志辉机械工业9787111736547全新正版
  • 机器学习高级实践:计算广告、供需预测、智能营销、动态定价王聪颖 谢志辉机械工业9787111736547全新正版
  • 机器学习高级实践:计算广告、供需预测、智能营销、动态定价王聪颖 谢志辉机械工业9787111736547全新正版
21年品牌 40万+商家 超1.5亿件商品

机器学习高级实践:计算广告、供需预测、智能营销、动态定价王聪颖 谢志辉机械工业9787111736547全新正版

115.78 8.3折 139 全新

库存2件

河南平顶山
认证卖家担保交易快速发货售后保障

作者王聪颖 谢志辉

出版社机械工业

ISBN9787111736547

出版时间2023-11

装帧其他

开本其他

定价139元

货号31894951

上书时间2024-10-25

万卷淘书斋

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
作者简介
王聪颖,北京邮电大学计算机学院(国家示范性软件学院)硕士,现任滴滴国际化资深算法工程师,负责滴滴国际化增长、调度算法策略。曾供职于快手,顺丰,VMware等多家国内外知名科技公司,从0-1、1-10的参与设计并主导开发了多个机器学习算法赋能业务场景并显著提升业务效果的项目,曾获得Kaggle比赛银牌、铜牌。
谢志辉,得克萨斯大学奥斯汀分校博士,在人工智能和机器学习领域有着深厚实践和理论经验。曾供职于滴滴出行和阿里巴巴等互联网平台,成功构建了工业级的分析和自动化的模型平台,对支持业务规模化和快速迭代起到了关键作用。作者也曾在美国雅虎公司桑尼维尔总部担任广告科学家,从事雅虎全域展示广告和视频广告交易以及拍卖定价机制的相关研究,贡献数千万美元的卖方收益。进入工业界之前在伊利诺伊大学执教。作者在相关领域的国际会议和杂志上发表论文十多篇,申请中/已授权中美国专利二十多项。

目录
序一
序二
前言
第1章 机器学习/
1.1机器学习概述/
1.1.1机器学习发展历史/
1.1.2机器学习工作原理/
1.2机器学习典型工具箱/
1.2.1NumPy/
1.2.2Pandas/
1.2.3SciKit-Learn/
1.2.4TensorFlow/
1.3机器学习项目实现流程/
1.3.1业务场景拆解/
1.3.2构建特征工程/
1.3.3模型评估与选型/
1.3.4模型优化/
第2章 业务场景拆解/
2.1业务目标拆解/
2.1.1业务目标拆解方法/
2.1.2算法模型作用环节分析/
2.2项目方案制定/
2.2.1项目团队配置/
2.2.2机器学习项目方案制定/
第3章 特征工程/
3.1特征工程基础/
3.1.1特征工程的概念和意义/
3.1.2工业界特征工程应用/
3.2数据预处理/
3.2.1缺失值处理/
3.2.2异常值处理/
3.3数值变量处理/
3.3.1连续特征离散化/
3.3.2数值数据变换/
3.3.3特征缩放和归一化/
3.4类别变量处理/
3.4.1类别特征的编码方法/
3.4.2特征交叉/
3.5特征筛选/
3.5.1过滤式/
3.5.2包装法/
3.5.3嵌入法/
第4章 模型评估和模型选型/
4.1模型评估和模型选型概要/
4.1.1模型评估简介/
4.1.2模型选型简介/
4.2模型评估方法/
4.2.1留出法/
4.2.2K折交叉验证法/
4.2.3自助法/
4.3模型评估指标/
4.3.1分类问题评估指标/
4.3.2回归模型评估指标/
4.3.3结合业务场景选择评估指标/
4.4典型模型介绍/
4.4.1统计机器学习/
4.4.2深度学习/
4.4.3因果推断/
4.5模型选型技术/
4.5.1模型选型依据/
4.5.2偏差和方差/
4.5.3结合业务场景进行模型选型/
第5章 模型优化/
5.1数据集优化/
5.1.1数据采样/
5.1.2数据降维/
5.2目标函数优化/
5.2.1常见损失函数/
5.2.2正则化项/
5.2.3不平衡数据集下对损失函数的优化/
5.3模型结构优化——集成学习/
5.3.1Bagging/
5.3.2Boosting/
5.3.3Stacking/
5.4最优化算法/
5.4.1梯度下降法/
5.4.2牛顿法和拟牛顿法/
5.4.3Momentum/AdaGrad/RMSProp/Adam/
5.5模型参数优化/
5.5.1模型调参要素/
5.5.2网格搜索/
5.5.3随机搜索/
5.5.4贝叶斯优化/
第6章 计算广告:广告点击率预估/
6.1业务场景介绍/
6.1.1计算广告概述/
6.1.2计算广告核心算法/
6.2点击率预估场景下的特征挖掘/
6.2.1数据集介绍/
6.2.2数据分析/
6.2.3特征构建/
6.3常见的点击率预估模型/
6.3.1基线模型建设/
6.3.2DeepCrossing模型/
6.3.3Wide&Deep模型/
6.3.4Deep&Cross模型/
6.3.5DeepFM模型/
6.3.6AFM模型/
6.3.7DIN模型/
第7章 供需预测:“新零售”之供需时序建模/
7.1业务场景介绍/
7.1.1为什么需要供需预测/
7.1.2新零售场景下的供需预测/
7.2时序问题的数据分析和特征挖掘/
7.2.1数据集介绍/
7.2.2数据分析/
7.2.3特征构建/
7.3时序模型探索过程/
7.3.1传统时序模型——ARIMA/
7.3.2Prophet模型/
7.3.3树模型——LightGBM/
7.3.4深度学习模型——LSTM模型/
7.3.5深度学习模型——Transformer模型/
7.3.6深度学习模型——DeepAR模型/
第8章 智能营销:优惠券发放/
8.1业务场景介绍/
8.1.1智能营销的概念和架构/
8.1.2优惠券发放业务场景/
8.2智能营销场景下的特征挖掘/
8.2.1数据集介绍/
8.2.2用户侧特征挖掘/
8.2.3产品侧特征挖掘/
8.3智能营销建模流程/
8.3.1发给谁——人群分层模型(RFM、Uplift Model、ESMM)/
8.3.2发多少——LTV模型/
8.3.3怎么发——优惠券分发策略/
第9章 动态定价:交易市场价格动态调整/
9.1业务场景介绍/
9.1.1动态定价概述/
9.1.2常见动态定价业务场景/
9.1.3网约车场景下的交易市场业务/
9.2动态定价相关的特征挖掘/
9.2.1时空特征挖掘/
9.2.2用户特征挖掘/
9.2.3平台特征挖掘/
9.3动态定价模型/
9.3.1动态定价策略总览/
9.3.2用户行为预估模型/

内容摘要
人工智能方兴未艾,机器学习算法作为实现人工智能最重要的技术之一,引起了无数相关从业者的兴趣。本书详细介绍了机器学习算法的理论基础和高级实践案例,理论部分介绍了机器学习项目体系搭建路径,包括业务场景拆解、特征工程、模型评估和选型、模型优化;实践部分介绍了业界常见的业务场景,包括计算广告、供需预测、智能营销、动态定价。随书附赠所有案例源码,获取方式见封底。
本书内容深入浅出,理论与实践相结合,帮助计算机专业应届毕业生、跨专业从业者、算法工程师等读者能够从零构建机器学习项目实现流程,快速掌握关键技术,迅速从小白成长为独当一面的算法工程师。

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP