《经典原版书库:大规模并行处理器程序设计(英文版.第2版)》内容简介:作者结合自己多年从事并行计算课程教学的经验,以简洁、直观和实用的方式,详细剖析了编写并行程序所需的各种技术,并用丰富的案例说明了并行程序设计的整个开发过程,即从计算机思想开始,直到最终实现高效可行的并行程序。 与上一版相比,本版对书中内容进行全面修订和更新,更加系统地阐述并行程序设计,既介绍了基本并行算法模式,又补充了更多的背景资料,而且还介绍了一些新的实用编程技术和工具。具体更新情况如下: 并行模式:新增3章并行模式方面的内容,详细说明了并行应用中涉及的诸多算法。 cuda fortran:这一章简要介绍了针对cuda体系结构的编程接口,并通过丰富的实例阐释cuda编程。 openacc:这一章介绍了使用指令表示并行性的开放标准,以简化并行编程任务。 thrust:thrust是cuda c/c++之上的一个抽象层。本版用一章的篇幅说明了如何利用thrust并行模板库以最少的编程工作来实现高性能应用。 c++amp:微软开发的一种编程接口,用于简化windows环境中大规模并行处理编程。 nvidia的kepler架构:探讨了nvidia高性能、节能的gpu架构的编程特性。
【作者简介】
David B.Kirk美国国家工程院院士、NVIDIA Fellow,曾是NVIDIA公司首席科学家。他领导了nvidia图形技术开发,并使其成为当今最流行的大众娱乐平台,也是cuda技术的创始人之一。2002年,他荣获ACM SIGGRAPH计算机图形成就奖,以表彰其在把高性能计算机图形系统推向大众市场方面所做出的杰出贡献。他拥有麻省理工学院的机械工程学学士学位和硕士学位,加州理工学院的计算机科学博士学位。kirk博士是50项与图形芯片设计相关的专利和专利申请的发明者,发表了50多篇关于图形处理技术的论文,是可视化计算技术方面的权威。 Wen-Mei W.Hwu(胡文美)拥有美国加州大学伯克利分校计算机科学博士学位,现任美国伊利诺伊大学厄巴纳—香槟分校(UIUC)协调科学实验室电气与计算机工程Jerry Sanders(AMD创始人)讲座教授、微软和英特尔联合资助的通用并行计算研究中心联合主任兼世界上第一个NVIDIA CUDA卓越中心首席研究员。胡教授是世界顶级的并行处理器架构与编译器专家,担任美国下一代千万亿级计算机——蓝水系统的首席研究员。他是IEEE Fellow、ACM Fellow。
【目录】
preface acknowledgements chapter 1 introduction 1.1 heterogeneous parallel computing 1.2 architecture of a modem gpu 1.3 why more speed or parallelism? 1.4 speeding up real applications 1.5 parallel programming languages and models 1.6 overarching goals 1.7 organization of the book references chapter 2 history of gpu computing 2.1 evolution of graphics pipelines the era of fixed-function graphics pipelines evolution of programmable real-time graphics unified graphics and computing processors 2.2 gpgpu: an intermediate step 2.3 gpu computing scalable gpus recent developments future trends references and further reading chapter 3 introduction to data parallelism and coda c 3.1 data parallelism 3.2 cuda program structure 3.3 a vector addition kernel 3.4 device global memory and data transfer 3.5 kernel functions and threading 3.6 summary function declarations kernel launch predefined variables runtime api 3.7 exercises references chapter 4 data-parallel execution model 4.1 cuda thread organization 4.2 mapping threads to multidimensional data 4.3 matrix-matrix multiplication--a more complex kernel 4.4 synchronization and transparent scalability 4.5 assigning resources to blocks 4.6 querying device properties 4.7 thread scheduling and latency tolerance 4.8 summary 4.9 exercises chapter 5 coda memories 5.1 importance of memory access efficiency 5.2 cuda device memory types 5.3 a strategy for reducing global memory traffic 5.4 a tiled matrix-matrix multiplication kernel 5.5 memory as a limiting factor to parallelism 5.6 summary 5.7 exercises chapter 6 performance considerations 6.1 warps and thread execution 6.2 global memory bandwidth 6.3 dynamic partitioning of execution resources 6.4 instruction mix and thread granularity 6.5 summary 6.6 exercises references chapter 7 floating-point considerations 7.1 floating-point format normalized representation of m excess encoding of e 7.2 representable numbers 7.3 special bit patterns and precision in ieee format 7.4 arithmetic accuracy and rounding 7.5 algorithm considerations 7.6 numerical stability 7.7 summary 7.8 exercises references chapter 8 parallel patterns: convolution 8.1 background 8.2 ID parallel convolution a basic algorithm 8.3 constant memory and caching 8.4 tiled 1d convolution with halo elements 8.5 a simpler tiled 1d convolution--general caching 8.6 summary 8.7 exercises chapter 9 parallel patterns: prefix sum 9.1 background 9.2 a simple parallel scan 9.3 work efficiency considerations 9.4 a work-efficient parallel scan 9.5 parallel scan for arbitrary-length inputs 9.6 summary 9.7 exercises reference chapter 10 parallel patterns: sparse matrix-vector multiplication 10.1 background 10.2 parallel spmv using csr 10.3 padding and transposition 10.4 using hybrid to control padding 10.5 sorting and partitioning for regularization 10.6 summary 10.7 exercises references chapter 11 application case study: advanced mri reconstruction 11.1 application background 11.2 iterative reconstruction 11.3 computing fhd step 1: determine the kernel parallelism structure step 2: getting around the memory bandwidth limitation. step 3: using hardware trigonometry functions step 4: experimental performance tuning 11.4 final evaluation 11.5 exercises references chapter 12 application case study: molecular visualization and analysis 12.1 application background 12.2 a simple kernel implementation 12.3 thread granularity adjustment 12.4 memory coalescing 12.5 summary 12.6 exercises references chapter 13 parallel programming and computational thinking 13.1 goals of parallel computing 13.2 problem decomposition 13.3 algorithm selection 13.4 computational thinking 13.5 summary 13.6 exercises references chapter 14 an introduction to opencltm 14.1 background 14.2 data parallelism model 14.3 device architecture 14.4 kernel functions 14.5 device management and kernel launch 14.6 electrostatic potential map in opencl 14.7 summary 14.8 exercises references chapter 15 parallel programming with openacc 15.1 0penacc versus cuda c 15.2 execution model 15.3 memory model 15.4 basic openacc programs parallel construct loop constmct kernels construct data management asynchronous computation and data transfer 15.5 future directions of openacc 15.6 exercises chapter 16 thrust: a productivity-oriented library for cuda 16.1 background 16.2 motivation 16.3 basic thrust features iterators and memory space interoperability 16.4 generic programming 16.5 benefits of abstraction 16.6 programmer productivity robustness real world performance 16.7 best practices fusion structure of arrays implicit ranges 16.8 exercises references chapter 17 cuda fortran 17.1 cuda fortran and cuda c differences 17.2 a first cuda fortran program 17.3 multidimensional array in cuda fortran. 17.4 overloading host/device routines with generic interfaces 17.5 calling cuda c via iso_c_binding 17.6 kernel loop directives and reduction operations 17.7 dynamic shared memory 17.8 asynchronous data transfers 17.9 compilation and profiling 17.10 calling thrust from cuda fortran 17.11 exercises chapter 18 an introduction to c + + amp 18.1 core c + + amp features 18.2 details of the c + + amp execution model explicit and implicit data copies asynchronous operation section summary 18.3 managing accelerators 18.4 tiled execution 18.5 c + + amp graphics features 18.6 summary 18.7 exercises chapter 19 programming a heterogeneous computing cluster 19.1 background 19.2 a running example 19.3 mpi basics 19.4 mpi point-to-point communication types 19.5 overlapping computation and communication 19.6 mpi collective communication 19.7 summary 19.8 exercises reference chapter 20 cuda dynamic parallelism 20.1 background 20.2 dynamic parallelism overview 20.3 important details launch enviromnent configuration apierrors and launch failures events streams synchronization scope 20.4 memory visibility global memory zero-copy memory constant memory texture memory 20.5 a simple example 20.6 runtime limitations memory footprint nesting depth memory allocation and lifetime ecc errors streams events launch pool 20.7 a more complex example linear bezier curves quadratic bezier curves bezier curve calculation (predynamic parallelism) bezier curve calculation (with dynamic parallelism) 20.8 summary reference chapter 21 conclusion and future outlook 21.1 goals revisited 21.2 memory model evolution 21.3 kernel execution control evolution 21.4 core performance 21.5 programming environment 21.6 future outlook references appendix A: matrix multiplication host-only version source code appendix B: gpu compute capabilities index
以下为对购买帮助不大的评价