机器学习(第2版)9787115598486赵卫东 董亮
9787115598486
¥
88.11
¥
67.35
全新
库存599件
作者 赵卫东 董亮
出版社 人民邮电出版社
ISBN 9787115598486
出版时间 2022-11
装帧 平装
定价 67.35元
货号 10065659581530
上书时间 2024-12-05
商品详情
品相描述:全新
商品描述
内容介绍 机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等*的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。 本书深入浅出、内容*、案例丰富,每章*提供Python程序代码和习题,供读者巩固所学知识。另外,本书还为读者提供了配套的微课视频。 作者介绍 赵卫东,复旦大学副教授,主要负责本科生和各类研究生机器学习、大数据核心技术和人工智能(机器学习)(商务数据分析)等课程的教学,2011年纽约大学访问学者。人工智能(机器学习)被评为上海市精品课程以及CMOOC联盟线上线下混合式教学改革项目,获得2013年高等教育上海市教学成果奖二等奖。目前主要研究方向包括机器学习应用和大数据分析等。主持国家自然科学基金2项、国家重点研发计划子课题、上海市浦江人才以及企业合作课题等30多项目。已在Knowledge and Information Systems ,Information Processing & Management,Information Systems Frontiers,Intelligent Data Analysis,Applied Intelligence等国内外刊物和学术会议发表论文100多篇。出版专著、教材《机器学习》《机器学习案例实战》《Python机器学习实战案例》等10多部。获得上海市2015年上海市科技进步二等奖。CDA三级认证数据科学家,腾讯云和百度云机器学习认证讲师。 目录 第 1章 机器学习概述 1 1.1 机器学习简介 1 1.1.1 机器学习简史 1 1.1.2 机器学习主要流派 3 1.2 机器学习、人工智能和数据挖掘 4 1.2.1 什么是人工智能 4 1.2.2 什么是数据挖掘 5 1.2.3 机器学习、人工智能与数据挖掘的关系 6 1.3 典型机器学习应用领域 6 1.4 机器学习算法 12 1.5 机器学习的一般流程 18 习题 19 第 2章 机器学习基本方法 20 2.1 统计分析 20 2.1.1 统计基础 20 2.1.2 常见概率分布 25 2.1.3 参数估计 26 2.1.4 假设检验 28 2.1.5 线性回归 28 2.1.6 逻辑回归 32 2.1.7 判别分析 33 2.1.8 非线性模型 35 2.2 高维数据降维 35 2.2.1 主成分分析 35 2.2.2 奇异值分解 38 2.2.3 线性判别分析 39 2.2.4 局部线性嵌入 42 2.2.5 拉普拉斯特征映射 43 2.3 特征工程 44 2.3.1特征构造 44 2.3.2特征选择 45 2.3.3特征提取 46 2.4 模型训练 46 2.4.1 模型训练常见术语 46 2.4.2 训练数据收集 47 2.5 可视化分析 47 2.5.1 可视化分析的作用 48 2.5.2 可视化的基本流程 48 2.5.3 可视化分析方法 48 2.5.4 可视化分析常用工具 50 2.5.5 常见的可视化图表 51 2.5.6 可视化分析面临的挑战 61 习题 61 第3章 决策树与分类算法 63 3.1 决策树算法 63 3.1.1 分支处理 65 3.1.2 连续属性离散化 70 3.1.3 过拟合问题 72 3.1.4 分类效果评价 75 3.2 集成学习 79 3.2.1 装袋法 79 3.2.2 提升法 80 3.2.3 GBDT 81 3.2.4 XGBoost算法 82 3.2.5 随机森林 86 3.3 决策树应用 88 习题 90 第4章 聚类分析 92 4.1 聚类分析概念 92 4.1.1 聚类方法分类 92 4.1.2 良好聚类算法的特征 93 4.2 聚类分析的度量 94 4.2.1 外部指标 94 4.2.2 内部指标 95 4.3 基于划分的聚类 96 4.3.1 k-均值算法 97 4.3.2 k-medoids算法 101 4.3.3 k-prototype算法 102 4.4 基于密度的聚类 102 4.4.1 DBSCAN算法 102 4.4.2 OPTICS算法 105 4.4.3 DENCLUE算法 105 4.5 基于层次的聚类 107 4.5.1 BIRCH聚类 108 4.5.2 CURE算法 110 4.6 基于网格的聚类 112 4.7 基于模型的聚类 113 4.7.1 概率模型聚类 113 4.7.2 模糊聚类 118 4.7.3 Kohonen神经网络聚类 118 习题 123 第5章 文本分析 124 5.1 文本分析介绍 124 5.2 文本特征提取及表示 125 5.2.1 TF-IDF 125 5.2.2 信息增益 125 5.2.3 互信息 126 5.2.4 卡方统计量 127 5.2.5 词嵌入 127 5.2.6 语言模型 128 5.2.7 向量空间模型 129 5.3 知识图谱 131 5.3.1 知识图谱相关概念 132 5.3.2 知识图谱的存储 132 5.3.3 知识图谱挖掘与计算 133 5.3.4 知识图谱的构建过程 135 5.4 词法分析 139 5.4.1 文本分词 139 5.4.2 命名实体识别 142 5.4.3 词义消歧 142 5.5 句法分析 143 5.6 语义分析 145 5.7 文本分析应用 146 5.7.1 文本分类 146 5.7.2 信息抽取 148 5.7.3 问答系统 149 5.7.4 情感分析 150 5.7.5 自动摘要 151 习题 152 第6章 神经网络 153 6.1 神经网络介绍 153 6.1.1 前馈神经网络 153 6.1.2 反馈神经网络 158 6.1.3 自组织神经网络 160 6.2 神经网络相关概念 161 6.2.1 *函数 162 6.2.2 损失函数 171 6.2.3 学习率 175 6.2.4 过拟合与网络正则化 179 6.2.5 预处理 181 6.2.6 训练方式 182 6.2.7 模型训练中的问题 182 6.2.8 神经网络效果评价 190 6.3 神经网络应用 190 习题 195 第7章 贝叶斯网络 196 7.1 贝叶斯理论概述 196 7.2 贝叶斯概率基础 196 7.2.1 概率论 196 7.2.2 贝叶斯概率 197 7.3 朴素贝叶斯分类模型 198 7.4 贝叶斯网络推理 201 7.5 贝叶斯网络的应用 206 7.5.1 中文分词 206 7.5.2 机器翻译 206 7.5.3 故障诊断 207 7.5.4 疾病诊断 207 习题 209 第8章 支持向量机 210 8.1 线性可分SVM 210 8.1.1 间隔与*平面 210 8.1.2 支持向量 210 8.1.3 对偶问题求解 212 8.1.4 软间隔 213 8.2 非线性SVM 214 8.2.1 非线性SVM原理 214 8.2.2 常见核函数 214 8.3 支持向量机应用 215 习题 219 第9章 分布式机器学习 220 9.1 分布式机器学习基础 220 9.1.1 参数服务器 220 9.1.2 分布式并行计算类型 221 9.2 分布式机器学习框架 222 9.3 并行决策树 227 9.4 并行k-均值算法 228 习题 230 第 10章 深度学习基础 231 10.1 卷积神经网络 231 10.1.1 卷积神经网络简介 232 10.1.2 卷积神经网络的结构 232 10.1.3 卷积神经网络的训练 241 10.1.4 常见卷积神经网络 243 10.2 循环神经网络 268 10.2.1 RNN基本原理 269 10.2.2 长短期记忆网络 276 10.2.3 门限循环单元 280 10.2.4 循环神经网络的其他改进 281 10.3 深度学习流行框架 284 习题 285 第 11章 *深度学习 286 11.1 *循环神经网络 286 11.1.1词嵌入 286 11.1.2自注意力模型 288 11.1.3多头注意力机制 290 11.1.4 Transformer 291 11.1.5 BERT模型 294 11.2 无监督式深度学习 295 11.2.1 深度信念网络 295 11.2.2 自动编码器网络 297 11.3 生成对抗网络 299 11.3.1 生成对抗网络基本原理 299 11.3.2 常见的生成对抗网络 302 11.4 迁移学习 305 11.5 对偶学习 307 习题 308 第 12章 推荐系统 309 12.1 推荐系统基础 309 12.1.1 推荐系统的应用场景 309 12.1.2 相似度计算 310 12.2 推荐系统通用模型 312 12.2.1 推荐系统结构 312 12.2.2 基于人口统计学的推荐 313 12.2.3 基于内容的推荐 313 12.2.4 基于协同过滤的推荐算法 314 12.2.5 基于图的模型 316 12.2.6 基于关联规则的推荐 318 12.2.7 基于知识的推荐 323 12.2.8 基于标签的推荐 324 12.3 推荐系统评测 325 12.3.1 评测方法 325 12.3.2 评测指标 326 12.4 推荐系统常见问题 330 12.5 推荐系统实例 333 12.6 深度学习在推荐系统中的应用 340 习题 343 第 13章 强化学习 345 13.1 强化学习概况 345 13.2 强化学习基础 346 13.2.1 马尔可夫链 346 13.2.2 强化学习基本概念 346 13.2.3 强化学习的目标函数 348 13.2.4 价值函数 349 13.3 强化学习基本算法 353 13.3.1 蒙特卡洛强化学习 353 13.3.2 时序差分算法 355 13.3.3 SARSA算法 355 13.3.4 Q-Learning算法 356 13.4 深度强化学习 361 13.4.1 DQN算法 361 13.4.2 运动员-裁判员算法 367 习题 373
— 没有更多了 —
以下为对购买帮助不大的评价