• 二手正版机器学习公式详解谢文睿,秦州9787115559104
21年品牌 40万+商家 超1.5亿件商品

二手正版机器学习公式详解谢文睿,秦州9787115559104

二手正版书籍 均为单本 特殊情况私聊客服 15::00前下单当天发货

18.92 3.8折 49.8 八品

仅1件

重庆沙坪坝
认证卖家担保交易快速发货售后保障

作者谢文睿,秦州

出版社人民邮电出版社

ISBN9787115559104

出版时间2021-03

装帧平装

开本其他

定价49.8元

货号9787115559104

上书时间2024-07-27

校羚图书

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八品
商品描述
作者简介



目录
序(王斌小米AI实验室主任、NLP首席科学家)

前言

主要符号表

第1章绪论

式(1.1)

式(1.2)

第2章模型评估与选择

式(2.20)

式(2.21)

式(2.27)

式(2.41)

附注

参考文献

第3章线性模型

式(3.5)

式(3.6)

式(3.7)

式(3.10)

式(3.27)

式(3.30)

式(3.32)

式(3.37)

式(3.38)

式(3.39)

式(3.43)

式(3.44)

式(3.45)

第4章决策树

式(4.1)

式(4.2)

式(4.6)

式(4.7)

式(4.8)

附注

参考文献

第5章神经网络

式(5.2)

式(5.10)

式(5.12)

式(5.13)

式(5.14)

式(5.15)

式(5.20)

式(5.22)

式(5.23)

式(5.24)

附注

参考文献

第6章支持向量机

式(6.9)

式(6.10)

式(6.11)

式(6.13)

式(6.35)

式(6.37)

式(6.38)

式(6.39)

式(6.40)

式(6.41)

式(6.52)

式(6.60)

式(6.62)

式(6.63)

式(6.65)

式(6.66)

式(6.67)

式(6.70)

附注

参考文献

第7章贝叶斯分类器

式(7.5)

式(7.6)

式(7.12)

式(7.13)

式(7.19)

式(7.20)

式(7.24)

式(7.25)

式(7.27)

式(7.34)

附注

参考文献

第8章集成学习

式(8.1)

式(8.2)

式(8.3)

式(8.4)

式(8.5)

式(8.6)

式(8.7)

式(8.8)

式(8.9)

式(8.10)

式(8.11)

式(8.12)

式(8.13)

式(8.14)

式(8.16)

式(8.17)

式(8.18)

式(8.19)

式(8.20)

式(8.21)

式(8.22)

式(8.23)

式(8.24)

式(8.25)

式(8.26)

式(8.27)

式(8.28)

式(8.29)

式(8.30)

式(8.31)

式(8.32)

式(8.33)

式(8.34)

式(8.35)

式(8.36)

第9章聚类

式(9.5)

式(9.6)

式(9.7)

式(9.8)

式(9.33)

式(9.34)

式(9.35)

式(9.38)

第10章降维与度量学习

式(10.1)

式(10.2)

式(10.3)

式(10.4)

式(10.5)

式(10.6)

式(10.10)

式(10.14)

式(10.17)

式(10.24)

式(10.28)

式(10.31)

第11章特征选择与稀疏学习

式(11.1)

式(11.2)

式(11.5)

式(11.6)

式(11.7)

式(11.10)

式(11.11)

式(11.12)

式(11.13)

式(11.14)

式(11.15)

式(11.16)

式(11.17)

式(11.18)

第12章计算学习理论

式(12.1)

式(12.2)

式(12.3)

式(12.4)

式(12.5)

式(12.7)

式(12.9)

式(12.10)

式(12.11)

式(12.12)

式(12.13)

式(12.14)

式(12.15)

式(12.16)

式(12.17)

式(12.18)

式(12.19)

式(12.20)

式(12.21)

式(12.22)

式(12.23)

式(12.24)

式(12.25)

式(12.26)

式(12.27)

式(12.28)

式(12.29)

式(12.30)

式(12.31)

式(12.32)

式(12.34)

式(12.36)

式(12.37)

式(12.38)

式(12.39)

式(12.40)

式(12.41)

式(12.42)

式(12.43)

式(12.44)

式(12.45)

式(12.46)

式(12.52)

式(12.53)

式(12.57)

式(12.58)

式(12.59)

式(12.60)

参考文献

第13章半监督学习

式(13.1)

式(13.2)

式(13.3)

式(13.4)

式(13.5)

式(13.6)

式(13.7)

式(13.8)

式(13.9)

式(13.12)

式(13.13)

式(13.14)

式(13.15)

式(13.16)

式(13.17)

式(13.20)

第14章概率图模型

式(14.1)

式(14.2)

式(14.3)

式(14.4)

式(14.7)

式(14.8)

式(14.9)

式(14.10)

式(14.14)

式(14.15)

式(14.16)

式(14.17)

式(14.18)

式(14.19)

式(14.20)

式(14.22)

式(14.26)

式(14.27)

式(14.28)

式(14.29)

式(14.30)

式(14.31)

式(14.32)

式(14.33)

式(14.34)

式(14.35)

式(14.36)

式(14.37)

式(14.38)

式(14.39)

式(14.40)

式(14.41)

式(14.42)

式(14.43)

式(14.44)

第15章规则学习

式(15.2)

式(15.3)

式(15.6)

式(15.7)

式(15.9)

式(15.10)

式(15.11)

式(15.12)

式(15.13)

式(15.14)

式(15.16)

第16章强化学习

式(16.2)

式(16.3)

式(16.4)

式(16.7)

式(16.8)

式(16.10)

式(16.14)

式(16.16)

式(16.31)

内容摘要
周志华老师的《机器学习》(俗称“西瓜书”)是机器学习领域的经典入门教材之一。本书(俗称“南瓜书”)基于Datawhale成员自学“西瓜书”时记下的笔记编著而成,旨在对“西瓜书”中重难点公式加以解析,以及对部分公式补充具体的推导细节。全书共16章,与“西瓜书”章节、公式对应,每个公式的推导和解析都以本科数学基础的视角进行讲解,希望能够帮助读者达到“理工科数学基础扎实点的大二下学期学生”水平。每章都附有相关阅读材料,以便有兴趣的读者进一步钻研探索。本书思路清晰,视角独特,结构合理,可作为高等院校计算机及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。

主编推荐
1.国内市场累计销量榜首的“西瓜书”《机器学习》公式接近解析指南!
“南瓜书”系Datawhale成员自学笔记,对“西瓜书”中250个重难点公式做了详细解析和推导(重难点公式覆盖率达99%),旨在解决机器学习中的数学难题。
2.机器学习初学小白提升数学基础能力的推荐练习册!
以本科数学基础视角对“西瓜书”里比较难理解的公式加以解析和推导细节,补充大量重、难点数学知识和参考材料,分享在学习中遇到的“坑”以及跳过这个“坑”的方法,对于初学机器学习的小白也能上手练习!
3.俞勇、王斌、李沐、程明明、陈光(博主@爱可可-爱生活)、徐亦达等人工智能领域大咖亲笔推荐

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP