• 现货!别莱利曼趣味科学系列—趣味几何学 (俄)雅科夫·伊西达洛
21年品牌 40万+商家 超1.5亿件商品

现货!别莱利曼趣味科学系列—趣味几何学 (俄)雅科夫·伊西达洛

现货二手 若套装 先联系客服确认,二手书无附赠品

6.25 2.4折 26 八五品

仅1件

湖南长沙
认证卖家担保交易快速发货售后保障

作者(俄)雅科夫·伊西达洛维奇·别莱利曼|译者:孟国华

出版社湖北少儿出版社

ISBN9787535346148

出版时间2009-06

装帧平装

定价26元

货号9787535346148

上书时间2024-08-22

湖男书店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:八五品
现货二手   二手书无附赠品
商品描述


基本信息


书名:别莱利曼趣味科学系列—趣味几何学


定价:26.00元


作者:(俄)雅科夫·伊西达洛维奇·别莱利曼|译者:孟国华


出版社:湖北少儿出版社


出版日期:2009年06月 


ISBN:9787535346148


字数:


页码:


版次:


装帧:


开本:


商品标识:9787535346148


[chatu]


编辑推荐




内容提要



这本书不是供研究,而是供阅读用的。 与其说是介绍一些新知识,不如说是激发读者对已知的几何学知识的新奇感。与同类丛书惯用的做法不同。本书采用极富趣味的叙述方式。收集在日常生活、技术领域、自然界和科学幻想小说中的难题、怪题和有趣的故事,使所描述的内容引人入胜,力求能引发对几何学的兴趣,启发思考。《趣味几何学》的主要目的在于,激发读者的科学想像力,使其养成以科学的精神进行思考的习惯,使读者由几何知识产生对极其丰富多彩的生活现象、平常接触的一切事物的众多联想。


目录



第一章 林中的几何学
 1.1 用阴影长度测量高度
 1.2 还有两个方法
 1.3 儒勒·凡尔纳测高妙法
 1.4 侦察兵的测高绝招
 1.5 借助笔记本测高
 1.6 不必靠近大树的测高法
 1.7 林业人员的测高仪
 1.8 镜子测高法
 1.9 两棵松树
 1.10 树干的形状
 1.11 万能的公式
 1.12 未伐树木体积和重量计算法
 1.13 树叶上的几何学第一章 林中的几何学
 1.1 用阴影长度测量高度
 1.2 还有两个方法
 1.3 儒勒·凡尔纳测高妙法
 1.4 侦察兵的测高绝招
 1.5 借助笔记本测高
 1.6 不必靠近大树的测高法
 1.7 林业人员的测高仪
 1.8 镜子测高法
 1.9 两棵松树
 1.10 树干的形状
 1.11 万能的公式
 1.12 未伐树木体积和重量计算法
 1.13 树叶上的几何学
 1.14 六条腿的大力士
第二章 河畔的几何学
 2.1 河流宽度测量法
 2.2 帽檐测距法
 2.3 岛屿的长度
 2.4 对岸上的行人
 2.5 最简单的测远仪
 2.6 河流的能量
 2.7 河水的流速
 2.8 河水的流量
 2.9 水中涡轮
 2.10 五彩虹膜
 2.11 水面上的圆圈
 2.12 关于榴霰弹爆炸后的设想
 2.13 船头的波峰
 2.14 炮弹的速度
 2.15 水塘的深度
 2.16 河中映出的星空
 2.17 跨河架桥筑路
 2.18 应建两座桥
第三章 旷野的几何学
 3.1 月球的可视尺寸
 3.2 视角
 3.3 盘子与月亮
 3.4 月亮和硬币
 3.5 轰动一时的照片
 3.6 活的测角仪
 3.7 雅科夫测角仪
 3.8 钉耙测角仪
 3.9 炮兵与角度
 3.10 视觉的敏锐度
 3.11 视力的极限
 3.12 地平线上的月亮和星星
 3.13 月球影子与平流层气球影子的长度
 3.14 云距离地面很高吗? 
 3.15 根据照片推断塔的高度
 3.16 自习题
第四章 大路上的几何学
 4.1 步量距离的技巧
 4.2 目测法
 4.3 坡度
 4.4 碎石堆
 4.5 “骄人的山岗”
 4.6 路的转弯处
 4.7 弯道的半径
 4.8 大洋的底
 4.9 世界上有“水山”吗?
第五章 不用公式和函数表的旅行三角学
 5.1 计算正弦
 5.2 开平方根
 5.3 根据正弦求角度
 5.4 太阳的高度
 5.5 小岛的距离
 5.6 湖泊的宽度
 5.7 三角形地带
 5.8 不用测量而确定角度
第六章 天与地在何处相接
 6.1 地平线
 6.2 地平线上出现的轮船
 6.3 地平线有多远?
 6.4 果戈理的塔
 6.5 普希金的山丘
 6.6 两条铁轨的交汇点
 6.7 灯塔问题
 6.8 闪电
 6.9 帆船
 6.10 月球上的“地平线”
 6.11 在月球的环形山上
 6.12 在木星上
 6.13 自习题
第七章 鲁滨逊的几何学
 7.1 星空中的几何学
 7.2 神秘岛的纬度
 7.3 地理经度的测定
第八章 黑暗中的几何学
 8.1 在船的底舱
 8.2 如何测量水桶
 8.3 测量尺
 8.4 还需要做什么
 8.5 验算
 8.6 马克·吐温黑夜之旅
 8.7 蒙眼转圈
 8.8 徒手测量法
 8.9 黑暗中的直角
第九章 圆的今昔
 9.1 埃及人和罗马人常用的几何学
 9.2 圆周率的精确度
 9.3 杰克·伦敦所犯的错误
 9.4 投针实验
 9.5 展开圆周
 9.6 方圆问题
 9.7 宾格三角形
 9.8 是头,还是脚
 9.9 捆绑赤道的钢丝
 9.10 事实与计算
 9.11 走钢丝的女孩
 9.12 飞越北极之路
 9.13 传动带的长度
 9.14 有关聪明乌鸦的习题
第十章 无须测量和计算的几何学
 10.1 不用圆规来作图
 10.2 薄铁片的重心
 10.3 拿破仑出的题目
 10.4 最简单的三分角器
 10.5 钟表三分角器
 10.6 划分圆周
 10.7 击打台球的方向
 10.8 “聪明”的台球
 10.9 一笔画成
 10.10 加里宁格勒的七座桥
 10.11 开几何学玩笑
 10.12 检验正方形
 10.13 另类棋赛
第十一章 几何学中的大与小
 11.1 一立方厘米里能容纳27 000 000  000 000个什么?
 11.2 体积与压力
 11.3 比蛛丝细但比钢丝结实
 11.4 两个容器
 11.5 一支硕大的香烟
 11.6 鸵鸟蛋
 11.7 隆鸟蛋
 11.8 尺寸上反差鲜明的鸟蛋
 11.9 如不打破蛋壳,怎样测定蛋壳的重量? 
 11.10 俄罗斯硬币的大小
 11.11 百万卢布的银币
 11.12 臆造的画面
 11.13 我们的正常体重
 11.14 巨人与侏儒
 11.15 格列佛与几何学
 11.16 尘埃与云为什么能浮在空中
第十二章 几何经济学
 12.1 帕霍姆如何买地?(列·托尔斯泰出的题目)
 12.2 是梯形,还是长方形?
 12.3 正方形的特性
 12.4 其他形状的地块
 12.5 面积最大的图形
 12.6 钉子
 12.7 体积最大的物体
 12.8 和数相等的乘数的乘积
 12.9 面积最大的三角形
 12.10 最重的方梁
 12.11 硬纸板三角形
 12.12 白铁匠遇到的难题
 12.13 车工遇到的难题
 12.14 怎样接长木板? 
 12.15 最短的路线显示全部信息


作者介绍




文摘



[chatu]


媒体推荐




—  没有更多了  —

以下为对购买帮助不大的评价

现货二手   二手书无附赠品
此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP