【二手正版】 Python金融大数据分析 伊夫·希尔皮斯科 9787115404459 人民邮电出版社
二手正版教材欢迎同学们选购
¥
31.8
3.2折
¥
99
九品
库存4件
作者伊夫·希尔皮斯科
出版社人民邮电出版社
ISBN9787115404459
出版时间2015-12
装帧其他
开本16开
定价99元
货号9787115404459
上书时间2024-12-25
商品详情
- 品相描述:九品
- 商品描述
-
作者简介
Yves Hilpsch,是Python Quants(德国)股份有限公司的创始人和任事股东,也是Python Quants(纽约)有限责任公司的共同创办人。该集团提供基于Python的金融和衍生品分析软件(参见http://pythonquants.com,http://quant-platfrom.com和http://dx-analytics.com),以及和Python及金融相关的咨询、开发和培训服务。
Yves还是Derivatives Analytics with Python(Wiley Finance,2015)的作者。作为获得数理金融学博士学位的商业管理专业研究生,他在萨尔州大学讲授计算金融学中的数值化方法课程。
目录
第1部分 Python与金融
第1章 为什么将Python用于金融
1.1 Python是什么
1.1.1 Python简史
1.1.2 Python生态系统
1.1.3 Python用户谱系
1.1.4 科学栈
1.2 金融中的科技
1.2.1 科技开销
1.2.2 作为业务引擎的科技
1.2.3 作为进入门槛的科技和人才
1.2.4 不断提高的速度、频率、数据量
1.2.5 实时分析的兴起
1.3 用于金融的
1.3.1 金融和Python语法
1.3.2 Python的效率和生产率
1.3.3 从原型化到生产
1.4 结语
1.5 延伸阅读
第2章 基础架构和工具
2.1 Python部署
2.1.1 An
2.1.2 Python Quant Pl
2.1.3 工具
2.1.4
2.1.5 I
2.1.6
2.2 结语
2.3 延伸阅读
第3章 入门示例
3.1 隐含波动率
3.2 蒙特卡洛模拟
3.2.1 纯
3.2.2 用NumPy向量化
3.2.3 利用对数欧拉方法实现全向量化
3.2.4 图形化分析
3.2.5 技术分析
3.3 结语
3.4 延伸阅读
第2部分 金融分析和开发
第4章 数据类型和结构
4.1 基本数据类型
4.1.1 整数
4.1.2 浮点数
4.1.3 字符串
4.2 基本数据结构
4.2.1 元组
4.2.2 列表
4.2.3 离题:控制结构
4.2.4 离题:函数式编程
4.2.5 字典
4.2.6 集合
4.3 NumPy数据结构
4.3.1 用Python列表形成数组
4.3.2 常规NumPy数组
4.3.3 结构数组
4.4 代码向量化
4.5 内存布局
4.6 结语
4.7 延伸阅读
第5章 数据可视化
5.1 二维绘图
5.1.1 一维数据集
5.1.2 二维数据集
5.1.3 其他绘图样式
5.2 金融学图表
5.3 3D绘图
第6章 金融时间序列
第7章 输入/输出操作
第8章 高性能的
第9章 数学工具
第10章 推断统计学
第11章 统计学
第12章 Excel集成
第13章 面向对象和图形用户界面
第14章 Web集成
第3部分 衍生品分析库
第15章 估值框架
第16章 金融模型的模拟
第17章 衍生品估值
第18章 投资组合估值
第19章 波动率期权
附录
内容摘要
Python凭借其简单、易读、可扩展性以及拥有巨大而活跃的科学计算社区,在需要分析、处理大量数据的金融行业得到了广泛而迅速的应用,并且成为该行业开发核心应用的编程语言。《Python金融大数据分析》提供了使用Python进行数据分析,以及开发相关应用程序的技巧和工具。
希尔皮斯科编写的《Python金融大数据分析》总计分为3部分,共19章,第1部分介绍了Python在金融学中的应用,其内容涵盖了Python用于金融行业的原
因、Python的基础架构和工具,以及Python在计量金融学中的一些具体入门实例;第2部分介绍了金融分析和应用程序开发中重要的Python库、技术和方法,其内容涵盖了Python的数据类型和结构、用matplotlib进行数据可视化、金融时间序列数据处理、高性能输入/输出操作、高性能的Python技术和库、金融学中需要的多种数学工具、随机数生成和随机过程模拟、Python统计学应用、Python和Excel的集成、Python面向对象编程和GUI的开发、Python与Web技术的集成,以及基于Web应用和Web服务的开发;第3部分关注的是蒙特卡洛模拟期权与衍生品定价实际应用的开发工作,其内容涵盖了估值框架的介绍、金融模型的模拟、衍生品的估值、投资组合的估值
、波动率期权等知识。
《Python金融大数据分析》适合对使用Python进行大数据分析、处理感兴趣的金融行业开发人员阅读。
— 没有更多了 —
以下为对购买帮助不大的评价