• 古希腊名题与现代数学
  • 古希腊名题与现代数学
  • 古希腊名题与现代数学
  • 古希腊名题与现代数学
  • 古希腊名题与现代数学
  • 古希腊名题与现代数学
  • 古希腊名题与现代数学
  • 古希腊名题与现代数学
  • 古希腊名题与现代数学
  • 古希腊名题与现代数学
21年品牌 40万+商家 超1.5亿件商品

古希腊名题与现代数学

批量上传,套装书可能不全,下单前咨询在线客服!有特殊要求,下单前请咨询客服!

38.75 6.1折 64 全新

库存7件

江西南昌
认证卖家担保交易快速发货售后保障

作者张贤科

出版社科学出版社

ISBN9787030178824

出版时间2021-04

装帧平装

开本16开

定价64元

货号29240389

上书时间2024-11-03

思源汇书店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
导语摘要

立方倍积,三等分角,化圆为方,正多边形作图,方程的根式解,和费尔马大定理,这些是*著名的数学历史性难题,挑战人类数千百年,深刻影响现代数学的发展和面貌。本书由浅入深介绍其源头、沿革、*终解答与证明、和引发的现代数学。前部分内容浅显有趣,初中生即可阅读。后部分渐深,可供大学生阅读,以古典问题为线索介绍现代数学中极其重要的群、域、模、伽罗瓦理论、代数数、超越数、椭圆曲线等。



商品简介

立方倍积,三等分角,化圆为方,正多边形作图,方程的根式解,和费尔马大定理,这些是*著名的数学历史性难题,挑战人类数千百年,深刻影响现代数学的发展和面貌。本书由浅入深介绍其源头、沿革、*终解答与证明、和引发的现代数学。前部分内容浅显有趣,初中生即可阅读。后部分渐深,可供大学生阅读,以古典问题为线索介绍现代数学中极其重要的群、域、模、伽罗瓦理论、代数数、超越数、椭圆曲线等。



作者简介

张贤科,清华大学教授,博士生导师。1969年毕业于中国科学技术大学数学系,1981年获得理学硕士学位,1985年获得理学博士学位。曾在中国科技大学任教20年。1993年调到清华大学,曾多次较长期访问或工作于美国、欧洲。曾任北京数学会副理事长,清华大学学位委员会委员,数学学位分委员会主席,国际理论物理中心(属UNESCO,在意大利)联合研究员和资深联合研究员(199l-),美、德两国《数学评论》长期评论员(1985-)。获得过“国家自然科学奖”(1990),国家“做出突出贡献的中国博士学位获得者”奖(1991),“中国科学院科技进步奖”(1988),安徽省、北京市、中国科技大学和清华大学的科研或教学奖。长期做代数和数论方面的研究和教学工作,在国内外发表学术论文七十多篇,在数域、函数域和椭圓曲线的数论结构等方面得出不少很有意义的成果。出版著作有《代数数论导引》(教育部评为全国研究生教学用书)、《高等代数学》和《高等代数解题方法》等。...

目录
引言


1古希腊难题:问题和历史


1 .1古希腊数学--


1. 2占希腊三大难题


1 .3直尺圆规作图


1.4立方倍积问题的所史


1 5三等分角问题的历史


1 6化圆为方问题的历史


2尺规作图可构作的数


2. 1数的进化


2. 2复数


2 .3尺规只能加减乘除开平方


2. 4古希腊难题的关键


2 .5二次扩张塔


2. 6可构作数


3古希腊难题的解决


3. 1三次方程的根不可构作


3. 2立方倍积、三等分角不可能


3.3再谈域的扩张


3. 4冉桦古希腊名题   


3. 5正多边形作图问题


4伽罗瓦理论与正多边形 


4 .1域的(自)同构


4. 2群


4 .3正规扩域  


4 .4伽罗瓦理论


4 .5正17边形作图


4. 6分圆域与正多边形


5根式解方程同题   


5.1一次至阴次方稃


5 .2五次方程   


5. 3方程可根式解的条件


5. 4可解群和对称群


5 .5一般方程和有理系数方程  


6化圆为方—π的超越性


6 .1超越数定理


6. 2整性和模


6 .3超越数定理的证明


7费尔马大定理——连接古今的传奇


7. 1费马的猜想


7. 2阶段:占典数论阶段 


7. 3第二阶腔:代数数论阶段


7 .4第三阶段:算术几何阶殷   


7. 5怀尔斯——生平和评价


7.6确定全部勾股数


7.7椭圆曲线和怀尔斯的证明


结语


参考文献



内容摘要

立方倍积,三等分角,化圆为方,正多边形作图,方程的根式解,和费尔马大定理,这些是*著名的数学历史性难题,挑战人类数千百年,深刻影响现代数学的发展和面貌。本书由浅入深介绍其源头、沿革、*终解答与证明、和引发的现代数学。前部分内容浅显有趣,初中生即可阅读。后部分渐深,可供大学生阅读,以古典问题为线索介绍现代数学中极其重要的群、域、模、伽罗瓦理论、代数数、超越数、椭圆曲线等。



—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP