批量上传,套装书可能不全,下单前咨询在线客服!有特殊要求,下单前请咨询客服!
¥ 22.9 2.9折 ¥ 79 全新
仅1件
作者中公教育广东专升本考试研究院
出版社世界图书出版公司
ISBN9787519291662
出版时间2022-08
装帧平装
开本16开
定价79元
货号29453944
上书时间2024-11-02
《中公版·2023广东省专升本考试考点精要:高等数学》
考情综述——每一章开始先分析本章的考情,包括考试大纲、重难点、历年考试真题中本章考点所占比例。多角度剖析历年真题,让考生全方位了解考试,为我们提炼高频考点提供依据。
精析考点——“考点精析”部分全面讲解了考试大纲所规定的基本知识点,在重要考点下面我们添加了“注”,重点阐述考点的内涵和外延以及复习过程中可能存在的问题。“考点精析”部分请您务必仔细研读,并在做题后温故知新。
精讲题型——本书的经典例题采用分题型精讲的方式展开,首先通过“思路点拨”的形式总结各类题型的本质特征和主要考点,进而有针对性地给出各类题型的解题方法。然后再对经典例题进行详细讲解。该部分内容重在帮助考生领悟精髓,对同类题目能够举一反三。
精练专题——每一章后均编排了“专题精练”,其大部分题目根据授课实践改编自真题,有助于考生对所学知识进行系统强化。该部分题目请您务必独立完成,一方面检验自身的学习效果、查漏补缺,另一方面培养独立做题的能力。
章函数、极限与连续
考情综述
考点精析
知识框架
基础知识精讲
题型精讲
一、函数
二、极限
三、连续
专题精练
第二章导数与微分
考情综述
考点精析
知识框架
基础知识精讲
题型精讲
一、导数的概念
二、导数的计算
专题精练
第三章微分中值定理与导数的应用
考情综述
考点精析
知识框架
基础知识精讲
题型精讲
一、微分中值定理
二、洛必达法则
三、利用导数研究函数的性态
专题精练
第四章不定积分
考情综述
考点精析
知识框架
基础知识精讲
题型精讲
一、原函数的概念
二、不定积分的计算
专题精练
第五章定积分及其应用
考情综述
考点精析
知识框架
基础知识精讲
题型精讲
一、定积分的性质
二、定积分的计算
三、定积分的应用
四、广义积分
专题精练
第六章常微分方程
考情综述
考点精析
知识框架
基础知识精讲
题型精讲
一、一阶微分方程
二、二阶常系数微分方程
专题精练
第七章多元函数微分学
考情综述
考点精析
知识框架
基础知识精讲
题型精讲
一、多元函数的基本概念
二、偏导数与全微分
专题精练
第八章重积分
考情综述
考点精析
知识框架
基础知识精讲
题型精讲
一、二重积分的概念及性质
二、二重积分的计算
三、三重积分的计算
专题精练
第九章无穷级数
考情综述
考点精析
知识框架
基础知识精讲
题型精讲
一、常数项级数的概念与性质
二、常数项级数的审敛法
专题精练
《中公版·2023广东省专升本考试考点精要:高等数学》
考情综述——每一章开始先分析本章的考情,包括考试大纲、重难点、历年考试真题中本章考点所占比例。多角度剖析历年真题,让考生全方位了解考试,为我们提炼高频考点提供依据。
精析考点——“考点精析”部分全面讲解了考试大纲所规定的基本知识点,在重要考点下面我们添加了“注”,重点阐述考点的内涵和外延以及复习过程中可能存在的问题。“考点精析”部分请您务必仔细研读,并在做题后温故知新。
精讲题型——本书的经典例题采用分题型精讲的方式展开,首先通过“思路点拨”的形式总结各类题型的本质特征和主要考点,进而有针对性地给出各类题型的解题方法。然后再对经典例题进行详细讲解。该部分内容重在帮助考生领悟精髓,对同类题目能够举一反三。
精练专题——每一章后均编排了“专题精练”,其大部分题目根据授课实践改编自真题,有助于考生对所学知识进行系统强化。该部分题目请您务必独立完成,一方面检验自身的学习效果、查漏补缺,另一方面培养独立做题的能力。
《中公版·2023广东省专升本考试考点精要:高等数学》
1.易读——设计清新大气
本书采用裸背锁线装订工艺,实现书页180°平铺阅读,同时采用较为舒朗的行间距,减轻视觉压力。并且采用双色印刷,版式清新大方。
2.易学——内容呈现合理
为了对核心考点进行更加深入的阐述,也为了更加全面地解答您在学习过程中可能遇到的问题,本书在关键知识点后面添加了【注】,呈现对重要考点的深入剖析或边缘知识的拓展。题型精讲中的“思路点拨”总结各类题型的本质特征和主要考点,有针对性地给出各类题型的解题方法。
3.易会——解析深入浅出
本书通过详尽的解析点拨作答思路,让考生在零基础的情况下也能轻松get解题方法,提升学习效果。
4.附大量增值服务:7份大礼包 2个小程序
本书附赠专升本7份大礼包——图书使用指南、《专升本一本通》、《考试大纲》、《思维导图》、《记忆宝典》、《母题爆破》、《核心词汇》 《经典语法》,以及2个小程序——专升本刷题小程序和专升本院校、专业查询小程序,让您了解本书的使用方法,快速解决专升本疑问,在线刷题复习,备考更具针对性,收获满满干货。
章函数、极限与连续
考情综述
考试大纲1.映射与函数
(1)函数的定义域;(2)函数的性质
2.极限
(1)数列的极限;(2)函数的极限;(3)无穷小与无穷大;(4)极限运算法则;(5)极限存在准则、两个重要极限;(6)无穷小的比较
3.连续
(1)函数的连续性与间断点;(2)连续函数的运算与初等函数的连续性;(3)闭区间上连续函数的性质重难点重点1.极限的概念与计算;
2.函数的连续性与间断点难点1.极限的概念;
2.无穷小的比较;
3.函数的间断点真题分布年份知识点占比2022函数连续求参数、重要极限、无穷小的比较、洛必达法则求极限15%2021等价无穷小替换、函数的间断点、无穷小的比较、函数极限的计算15%2020极限的四则运算、函数的连续性6%2019函数极限存在的条件、函数的间断点6%2018无穷小的性质、重要极限、函数的连续性9%2017极限的计算、重要极限、等价无穷小替换9%2016函数的连续性、重要极限、无穷小的比较11%2015无穷小的比较、函数的连续性9%考点精析
知识框架
基础知识精讲
一、函数
(一)函数的概念及表示法
1.定义
设x与y是两个变量,D是实数集R的某个非空子集,若对于D中的每一个x,按照对应法则f,总有确定的值y与之对应,则称因变量y为自变量x的函数,记作y=f(x)。这里的D称为函数f的定义域,相应的函数值的全体所构成的集合称为函数f的值域。
【注】①两个元素的集之间元素相互对应的关系称为映射,函数是从实数集到实数集的映射,它包括两大要素:定义域和对应法则。
②函数和变量的选取无关,只要定义域和对应法则相同,不管用什么变量表示函数的自变量和因变量,函数都是一样的。例如:y=x2,x∈[0,1]和u=t2,t∈[0,1]表示同一个函数。
2.表示法
表示函数的主要方法有三种:解析法(公式法)、表格法、图形法。
(1)解析法(公式法):用数学式表示自变量和因变量之间的对应关系的方法。
(2)表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法。
(3)图形法:用坐标平面上的点集{P(x,y)y=f(x),x∈D}来表示函数的方法。
(二)函数的性质
1.有界性
设函数f(x)的定义域为D,数集XD。如果存在正数M,使得对于任一x∈X,都有f(x)≤M,则称f(x)在X上有界。如果这样的M不存在,则称f(x)在X上无界。
【注】①函数的有界性也可以通过上、下界的方式来定义:如果存在实数m和M,使得对任一x∈X,都有m≤f(x)≤M,则称函数f(x)在X上有界。其中m和M分别称为函数f(x)在X上的下界和上界。
②在上述定义中,m(M)是函数f(x)在X上的下(上)界,则任何比m小(比M大)的数,都是f(x)在X上的下(上)界。
③函数在X上有界的充要条件是它在X上既有上界又有下界。
2.单调性
设函数f(x)的定义域为D,区间ID。如果对于区间I上任意两点x1,x2,当x1<x2时,恒有f(x1)<f(x2)(或f(x1)>f(x2)),
则称函数f(x)在区间I上单调增加(或单调减少)。
单调增加和单调减少的函数统称为单调函数。
(1)单调性的性质:
①如果f1(x),f2(x)都是增函数(或减函数),则f1(x) f2(x)也是增函数(或减函数)。
②设f(x)是增函数,如果常数C>0,则C·f(x)是增函数;如果常数C<0,则C·f(x)是减函数。
③如果函数y=f(u)与函数u=g(x)增减性相同,则函数y=f[g(x)]为增函数,如果函数y=f(u)与函数u=g(x)增减性相反,则函数y=f[g(x)]为减函数。
(2)常见函数的单调区间:
常见函数单调增区间单调减区间y=x2 ax b- a2, ∞-∞,- a2y=ex(-∞, ∞)无y=lnx(0, ∞)无y=sinx2kπ- π2,2kπ π22kπ π2,2kπ 3π2y=cosx[2kπ-π,2kπ][2kπ,2kπ π]y=1x无(-∞,0),(0, ∞)3.奇偶性
设函数f(x)的定义域D关于原点对称。如果对于任一x∈D,都有f(-x)=f(x),则称f(x)为偶函数;如果对于任一x∈D,都有f(-x)=-f(x),则称f(x)为奇函数。
(1)奇偶性的性质:
①偶函数的图像关于y轴对称,奇函数的图像关于原点对称。
②如果f1(x)和f2(x)都是偶函数(或奇函数),则对任意的常数k1,k2∈R,k1 f1(x) k2 f2(x)仍是偶函数(或奇函数)。
③如果f1(x)和f2(x)的奇偶性相同,则f1(x)·f2(x)为偶函数;如果f1(x)和f2(x)的奇偶性相反,则f1(x)·f2(x)为奇函数。
(2)常见的偶函数:
y=xk(k为偶数),y=cosx,y=x,
f(x),f(x) f(-x)2, f(x)·f(-x),其中f(x)是定义在对称区间上的任意函数。
常见的奇函数:
y=xk(k为奇数),y=sinx,y=tanx,y=cotx,y=ln(x 1 x2),
f(x)-f(-x)2,其中f(x)是定义在对称区间上的任意函数。
4.周期性
设函数f(x)的定义域为D,如果存在一个正数T,使得对任一x∈D有x±T∈D,且f(x T)=f(x)恒成立,则称f(x)为周期函数,T称为f(x)的周期。一般周期函数的周期是指小正周期。
【注】①如果f(x)以T为小正周期,则对任意的非零常数C,Cf(x)仍然以T为小正周期, f(Cx)以TC为小正周期。
②如果f1(x)和f2(x)都以T为周期,则对于任意的常数k1,k2∈R,k1f1(x) k2f2(x)仍然以T为周期。注意这时小正周期有可能缩小,如f1(x)=cos2x sinx,f2(x)=sinx都以2π为小正周期,但f1(x)-f2(x)=cos2x以π为小正周期。
(三)函数的运算
1.四则运算
设函数f(x)和g(x)的定义域分别为D1和D2,且D=D1∩D2≠,则这两个函数经过四则运算之后能形成新的函数:
和(差)运算:f(x)±g(x),x∈D;
积运算:f(x)·g(x),x∈D;
商运算:f(x)g(x),x∈D\{xg(x)=0,x∈D}。
2.复合函数
设函数y=f(u)的定义域为D1,函数u=g(x)的定义域为D2。如果g(x)的值域g(D2)包含于f(u)的定义域D1,则可以定义函数y=f[g(x)],x∈D2为函数f(u)与g(x)的复合函数,记作y=f[g(x)]或fg。
【注】①复合函数的基本思想是把y=f(x),x∈D1中的x进行推广,变成一个新的函数,这是我们认识和理解函数的基本方式。
②注意能够进行复合的前提条件是g(x)的值域g(D2)包含于f(u)的定义域D1。如果该条件不满足,只要g(x)的值域g(D2)和f(u)的定义域D1的交集不是空集,复合运算也可以进行,只不过此时复合之后函数的定义域变成了{xx∈D2且g(x)∈D1}。
3.反函数
设函数y=f(x)的定义域为D,其值域为f(D)。如果对于每一个y∈f(D),都有确定的x∈D,使得y=f(x)(我们将该对应法则记作f -1),则这个定义在f(D)上的函数x=f -1(y)就称为函数y=f(x)的反函数。
【注】①不是所有的函数都有反函数。函数y=f(x),x∈D存在反函数的充要条件是对于定义域D中任意两个不相等的自变量x1,x2,有f(x1)≠f(x2)。一般来说,严格单调的函数一定有反函数。
②在同一坐标平面上,函数y=f(x)与其反函数y=f-1(x)的图像关于直线y=x对称。
(四)常见的函数类型
1.初等函数
(1)常用的基本初等函数有五类:指数函数、对数函数、幂函数、三角函数及反三角函数。
函数
名称函数的记号函数的图像函数的性质指数
函数y=ax(a>0,a≠1)a)不论x为何值,y总为正数;
b)当x=0时,y=1对数
函数y=logax(a>0,a≠1) a)其图像总位于y轴右侧,恒过(1,0)点;
b)当a>1时,函数y=logax在区间(0,1)的值为负,在区间(1, ∞)的值为正,在定义域内单调递增幂函数y=xa,a为任意实数
这里只画出部分函数图像的
象限部分 令a=mn(mn是简分数),则
a)当m为偶数、n为奇数时,xa是偶函数;
b)当m,n都是奇数时,xa是奇函数;
c)当m为奇数、n为偶数时,xa没有奇偶性(续表)函数
名称函数的记号函数的图像函数的性质三角
函数y=sinx(正弦函数)
这里只写出了正弦函数 a)正弦函数是以2π为周期的函数;
b)正弦函数是奇函数且sinx≤1反三角
函数y=arcsinx(反正弦函数)
这里只写出了反正弦函数由于此对应法则确定了一个多值函数,因此将此值域限制在- π2,π2,并称其为反正弦函数的主值(2)初等函数:由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数。
2.分段函数
(1)分段函数的基本形式:
f(x)=f1(x),x∈I1,f2(x),x∈I2,fn(x),x∈In。
(2)隐含的分段函数:
①值函数:
f(x)=x=x,x≥0,-x,x<0,
其定义域是(-∞, ∞),值域是[0, ∞)。
②取整函数:f(x)=[x]表示不超过x的整数。
③值、小值函数:y=max{f(x),g(x)},y=min{f(x),g(x)}。
3.隐函数
如果变量x和y满足方程F(x,y)=0,当x取区间I内的任一值时,相应地总有满足该方程的的y值存在,则这样确定的函数关系y=y(x)称为由方程F(x,y)=0确定的隐函数。
4.由参数方程定义的函数
若参数方程x=φ(t),y=ψ(t),α≤t≤β确定了y与x间的函数关系,则称此函数关系所表达的函数为由参数方程所确定的函数。
二、极限
(一)极限的概念
1.数列极限
设{xn}为一数列,a为常数,则limn→∞xn=a对任意的ε>0,存在正整数N,使得当n>N时,有xn-a<ε。
【注】①数列极限limn→∞xn=a的含义:当n无限增大时,数列的值无限趋近于a。
②对极限过程n→∞要注意两点:一是这里的无穷一定是正无穷;二是n只能取正整数。
2.函数极限
设函数f(x)的定义域为R,A为一个常数,则limx→∞ f(x)=A对任意的ε>0,存在X>0,使得当x>X时,有f(x)-A<ε。类似可定义limx→ ∞ f(x)=A,limx→-∞ f(x)=A。
【注】①函数极限limx→∞ f(x)=A的含义:当x的值无限增大时,函数值无限趋近于A。注意这里的x可以是正数也可以是负数。
②limx→∞ f(x)=A的充要条件是limx→-∞ f(x)=limx→ ∞ f(x)=A。
设函数f(x)在点x0的某去心邻域内有定义,A为一个常数,则limx→x0 f(x)=A对任意的ε>0,存在δ>0,当0<x-x0<δ时,有f(x)-A<ε。
【注】①注意这里
— 没有更多了 —
以下为对购买帮助不大的评价