作者简介 Patrick Billingsley是芝加哥大学统计学和数学教授。他是《管理和经济类适用的统计学》(与Watson等人合作)、《统计推断要义》(与D.L.Huntsberger合作)、《概率测度的收敛性》等书的作者,曾任美国数理统计学会的《概率年刊》主编,他从普林斯顿大学获得哲学博士。
目录 FOREWORD PREFACE Patrick Billingsley 1925- 2011 Chapter 1 PROBABILITY 1. BOREL'S NORMAL NUMBER THEOREM, 1 The Unit Interval--The Weak Law of Large Numbers--The Strong Law of Large Numbers--Strong Law Versus Weak-- Length--The Measure Theory of Diophantine Approximation* 2. PROBABILITY MEASURES, 18 Spaces --Assigning Probabilities--Classes of Sets--Probability Measures--Lebesgue Measure on the Unit Interval--Sequence Space* - Constructing σ-Fields* 3. EXISTENCE AND EXTENSION, 39 Construction of the Extension--Uniqueness and the π-λ Theorem--Monotone Classes--Lebesgue Measure on the Unit Interval- Completeness-- Nonmeasurable Sets--Two Impossibility Theorems* 4. DENUMERABLE PROBABILITIES, 53 General Formulas-- Limit Sets-Independent Events--Subfields--The Borel-Cantelelli Lemmas--The Zero-One Law 5. SIMPLE RANDOM VARIABLES, 72 Definition-- Convergence of Random Variables--Independence--Existence of Independent Sequences-- Expected Value--Inequalities 6. THE LAW OF LARGE NUMBERS, 90 The Strong Law--The Weak Law--Bernstein's Theorem--A Refinement of the Second BoreI-Cantelli Lemma 7. GAMBLING SYSTEMS, 98 Gambler's Ruin--Selection Systems--Gambling Policies--Bold Play*--Timid Play* 8. MARKOVCHAINS, 117 Definitions-- Higher-Order Transitions --An Existence Theorem--Transience and Persistence--Another Criterion for Persistence--Stationary Distributions-- Exponential Convergence*--Optimal Stopping* 9. LARGE DEVIATIONS AND THE LAW OF THE ITERATED LOGARITHM, 154 Moment Generating Functions--Large Deviations -- Chernoff's Theorem*--The Law of the Iterated Logarithm Chapter 2 MEASURE 167 10. GENERAL MEASURES, 167 Classes of Sets-- Conventions Involving ∞ -- Measures-- Uniqueness 11. OUTER MEASURE, 174 Outer Measure--Extension--An Approximation Theorem 12. MEASURES IN EUCLIDEAN SPACE, 181 Lebesgue Measure--Regularity--Specifying Measures on the Line--Specifying Measures in Rk-strange Euclidean Sets* 13. MEASURABLE FUNCTIONS AND MAPPINGS, 192 Measurable Mappings-- Mappings into Rk- Limits and Measurability--Transformations of Measures 14. DISTRIBUTION FUNCTIONS, 198 Distribution Functions--Exponential Distributions--Weak Convergence-- Convergence of Types* -- Extremal Distributions* Chapter 3 INTEGRATION 211 15. THE INTEGRAL, 211 Definition -- Nonnegative Functions-- Uniqueness 16. PROPERTIES OF THE INTEGRAL, 218 Equalities and Inequalities--Integration to the Limit--Integration over Sets-- Densities-- Change of Variable-- Uniform Integrability-- Complex Functions 17. THE INTEGRAL WITH RESPECT TO LEBESGUE MEASURE, 234 The Lebesgue Integral on the Line--The Riemann Integral--The Fundamental Theorem of Calculus--Change of Variable--The Lebesgue Integral in Rk--Stieltjes Integrals 18. PRODUCT MEASURE AND FUBINI'S THEOREM, 245 Product Spaces-- Product Measure-- Fubini's Theorem--Integration by Parts-- Products of Higher Order 19. THE Lp SPACES*, 256 Definitions-- Completeness and Separability-- Conjugate Spaces--Weak Compactness--Some Decision Theory--The Space L2-An Estimation Problem Chapter 4 RANDOM VARIABLES AND EXPECTED VALUES 271 20. RANDOM VARIABLES AND DISTRIBUTIONS, 271 Random Variables and Vectors-- Subfields-- Distributions -- Multidimensional Distributions--Independence--Sequences of Random Variables--Convolution--Convergence in Probability--The Glivenko-Cantelli Theorem* 21. EXPECTED VALUES, 291 Expected Value as Integral--Expected Values and Limits-- Expected Values and Distributions-- Moments--Inequalities--Joint Integrals--Independence and Expected Value-- Moment Generating Functions 22. SUMS OF INDEPENDENT RANDOM VARIABLES, 300 The Strong Law of Large Numbers--The Weak Law and Moment Generating Functions--Kolmogorov's Zero-One Law-- Maximal Inequali
以下为对购买帮助不大的评价