数学分析教程(上册)(第3版)
批量上传,套装书可能不全,下单前咨询在线客服!有特殊要求,下单前请咨询客服!
¥
50.18
6.7折
¥
75
全新
库存28件
作者常庚哲,史济怀
出版社中国科学技术大学出版社
ISBN9787312030093
出版时间2019-11
装帧平装
开本16开
定价75元
货号28514857
上书时间2024-11-02
商品详情
- 品相描述:全新
- 商品描述
-
作者简介
关于两位作者,我们在前面的一些新书预报中也做过详细的介绍,现重新整理如下,希望能帮助到读者。常庚哲,中国科技数学系教授,博士生导师,安徽省数学会理事长,中国数学会奥林匹克委员会委员教练员。1984年被《计算机辅助几何设计》杂志聘为该刊编委,成为该刊编委中好的中国学者。1986年被列入第八版美国出版的《世界名人录》。1988年任第29届IMO中国队领队。在计算几何领域中,与张景中等合作,对二维及高维上的Bernstein多项式证明凸性逆定理成立,解决了一个多年难题。史济怀,1958年于复旦数学系,同年9月分配到刚成立的中国科学技术数学系任教,先后担任数学系副主任、理科教学评估组组长、院副院长、教务长、副校长和院院长等职。50多年来,他除了担任副校长职务时只上课之外,其余大部分时间都没有下过生讲台,他一直为生讲授《数学分析》、《常微分方程》、《线性代数》、《复变函数》、《数理方程》等多门基础课,送走了一届又一届的科子。直到66岁退休返聘后,他仍然坚持一周6课时的工作量,为生讲授《数学分析》。他用50余年的教程诠释了默默奉献、教书育人的为师风范。...
目录
总序
第3版前言
第2版前言
第1章实数和数列极限
1.1实数
1.2数列和收敛数列
1.3收敛数列的性质
1.4数列极限概念的推广
1.5单调数列
1.6自然对数的底e
1.7基本列和Cauchy收敛原理
1.8上确界和下确界
1.9有限覆盖定理
1.10上极限和下极限
1.11Stolz定理
第2章函数的连续性
2.1集合的映射
2.2集合的势
2.3函数
2.4函数的极限
2.5极限过程的其他形式
2.6无穷小与无穷大
2.7连续函数
2.8连续函数与极限计算
2.9函数的一致连续性
2.10有限闭区间上连续函数的性质
2.11函数的上极限和下极限
2.12混沌现象
第3章函数的导数
3.1导数的定义
3.2导数的计算
3.3高阶导数
3.4微分学的中值定理
3.5利用导数研究函数
3.6L’Hospital法则
3.7函数作图
第4章一元微分学的很好——Taylor定理
4.1函数的微分
4.2带Peano余项的Taylor定理
4.3带Lagrange余项和Cauchy余项的Taylor定理
第5章求导的逆运算
5.1原函数的概念
5.2分部积分法和换元法
5.3有理函数的原函数
5.4可有理化函数的原函数
第6章函数的积分
6.1积分的概念
6.2可积函数的性质
6.3微积分基本定理
6.4分部积分与换元
6.5可积性理论
6.6Lebesgue定理
6.7反常积分
6.8数值积分
第7章积分学的应用
7.1积分学在几何学中的应用
7.2物理应用举例
7.3面积原理
7.4Wallis公式和Stirling公式
第8章多变量函数的连续性
8.1n维Euclid空间
8.2Rn中点列的极限
8.3Rn中的开集和闭集
8.4列紧集和紧致集
8.5集合的连通性
8.6多变量函数的极限
8.7多变量连续函数
8.8连续映射
第9章多变量函数的微分学
9.1方向导数和偏导数
9.2多变量函数的微分
9.3映射的微分
9.4复合求导
9.5曲线的切线和曲面的切平面
9.6隐函数定理
9.7隐映射定理
9.8逆映射定理
9.9高阶偏导数
9.10中值定理和Taylor公式
9.11极值
9.12条件极值
部分练习题参考答案
问题的解答或提示
索引
内容摘要
《中国科学技术大学精品教材:数学分析教程(上册)(第3版)》分上、下两册。《中国科学技术大学精品教材:数学分析教程(上册)(第3版)》为上册,内容包括实数和数列极限,函数的连续性,函数的导数,Taylor定理,求导的逆运算,甬数的积分,积分学的应用,多变量函数的连续性,多变量函数的微分学,以及多项式的捕值与逼近初步()。书中配有丰富的练习题,可供学生巩固基础知识;同时也有适量的问题,可供学有余力的学生练习,并且书后附有问题的解答或提示,以供参考。
— 没有更多了 —
以下为对购买帮助不大的评价