作者简介 Simon J. D. Prince博士,伦敦大学学院计算机科学系高级讲师。他主讲的课程包括:计算机视觉、图像处理和高级数学方法。他有着计算机科学和生物学的专业背景,发表了多篇论文,涉及计算机视觉、生物测定学、心理学、生理学、医学影像、计算机图形学和人机交互。
目录 Table of Contents Part I. Probability:1. Introduction to probability2. Common probability distributions3. Fitting probability models4. The normal distributionPart II. Machine Learning for Machine Vision:5. Learning and inference in vision6. Modeling complex data densities7. Regression models8. Classification modelsPart III. Connecting Local Models:9. Graphical models10. Models for chains and trees11. Models for gridsPart IV. Preprocessing:12. Image preprocessing and feature extractionPart V. Models for Geometry:13. The pinhole camera14. Models for transformations15. Multiple camerasPart VI. Models for Vision:16. Models for style and identity17. Temporal models18. Models for visual wordsPart VII. Appendices:A. OptimizationB. Linear algebraC. Algorithms.
以下为对购买帮助不大的评价