批量上传,套装书可能不全,下单前咨询在线客服!有特殊要求,下单前请咨询客服!
¥ 56.67 4.8折 ¥ 118 全新
库存19件
作者张若愚
出版社清华大学出版社
ISBN9787302426585
出版时间2016-04
装帧平装
开本16开
定价118元
货号23957701
上书时间2024-11-01
第1版序
Python理所当然地被视为一门通用的程序设计语言,非常适合于网站开发、系统管理以及通用的业务应用程序。它为诸如YouTube这样的网站系统、Red Hat操作系统中不可或缺的安装工具以及从云管理到投资银行等大型企业的IT系统提供技术支持,从而赢得了如此高的声誉。Python还在科学计算领域建立了牢固的基础,覆盖了从石油勘探的地震数据处理到量子物理等范围广泛的应用场景。Python这种广泛的适用性在于,这些看似不同的应用领域通常在某些重要的方面是重叠的。易于与数据库连接、在网络上发布信息并高效地进行复杂计算的应用程序对于许多行业是至关重要的,而Python主要的长处就在于它能让开发者迅速地创建这样的工具。
实际上,Python与科学计算的关系源远流长。吉多?范罗苏姆创建这门语言,还是在他在荷兰阿姆斯特丹的国家数学和计算机科学研究学会(CWI)的时候。当时只是作为“课余”的开发,但是很快其他人也开始为之做出贡献。从1994年开始的头几次Python研讨会,都是在大洋彼岸的科研机构举行的。例如国家标准技术研究所(NIST)、美国地质学会以及劳伦斯利福摩尔国家实验室(LLNL),所有这些都是以科研为中心的机构。当时Python 1.0刚刚发布,与会者们就已经开始打造Python的数学计算工具。10多年过去了,我们欣喜地看到,我们在开发具有惊人能力的工具集以及建设多彩的社区方面做出了如此多的成绩。很合时宜的是,就我所知的本涵盖了Python的主要科学计算工具的综合性著作,在另一个海洋之遥的中国编著并出版了。展望今后的十几年,我迫不及待地想看到我们能共同创建出怎样的未来。
吉多他本人并不是科学家或工程师。他在CWI的计算机科学部门时,为了缓解为阿米巴(Amoeba)操作系统创建系统管理工具的痛苦,他创建了Python。当时那些系统管理工具都是用C语言编写的。于是Python就成了填补shell脚本和C语言之间空白的工具。操作系统工具与计算逆矩阵或快速傅立叶变换是完全不同的领域,但是从Python诞生开始,世界各地的许多科学家就成了它早期的采用者。吉多成功地创建了一门能与他们的C和Fortran代码完美结合的、具有优雅表现力的程序语言。并且,吉多是一位愿意听取建议并添加关键功能的语言设计师,例如支持复数就是专门针对科学领域的。随着NumPy的前身——Numeric的诞生,Python获得了一个高效且强大的数值运算工具,它巩固了在未来几十年中,Python作为领先的科学计算语言的地位。
对于一些人来说,“科学计算编程”会让人联想起Numerical Recipes in C中描述的那些复杂算法,或是研究生们在深夜中努力打造程序的场景。但是真实情况所涵盖的范围更广泛——从底层的算法设计到具有高级绘图功能的用户界面开发。而后者的重要性却常常被忽视了。幸运的是在本书中,作者为我们介绍了科学计算编程所需的各个方面。从NumPy库和SciPy算法工具库的基础开始,介绍了任何科学计算应用程序所需的基本工具。然后,本书很恰当地介绍了二维绘图以及三维可视化库——matplotlib、Chaco、Mayavi。用Traits和TraitsUI进行应用程序和界面开发,以及用Cython、Weave、ctypes和SWIG等与传统的C语言库相互结合等内容在书中也有很好的介绍。除了这些核心的工具之外,本书还介绍了使用SymPy进行数学符号运算以及其他的各种有用的主题。
所有这些主题都被汇编到一本书中真是一件令人欣喜的事情。本书所提供的一站式服务,能够指导读者从初的入门直到创建一个漂亮的、全功能的分析与模拟应用程序。
Eric Jones
2011年12月8日
关于序言作者
Eric Jones是Enthought公司的CEO,他在工程和软件开发领域拥有广泛的背景,指导Enthought公司的产品工程和软件设计。在共同创建Enthought公司之前,他在杜克大学电机工程学系从事数值电磁学以及遗传优化算法方面的研究,并获得了该系的硕士和博士学位。他教授过许多用Python做科学计算的课程,并且是Python软件基金会的成员。
关于Enthought公司
Enthought是一家位于美国得克萨斯州首府奥斯汀的软件公司,主要使用Python从事科学计算工具的开发。本书中介绍的NumPy、SciPy、Traits、TraitsUI、Chaco、TVTK以及Mayavi均为该公司开发或维护的开源程序库。
前 言
Python世界的发展日新月异,在本书第1版出版之后,Python在数据分析、科学计算领域又出现了许多令人兴奋的进展:
●IPython从增强的交互式解释器发展到Jupyter Notebook项目,它已经成为Python科学计算界的标准配置。
●Pandas经过几个版本的更新,目前已经成为数据清洗、处理和分析的不二选择。
●OpenCV官方的扩展库cv2已经正式发布,它的众多图像处理函数能直接对NumPy数组进行处理,编写图像处理、计算机视觉程序变得更方便、简洁。
●matplotlib 2.0即将发布,它将使用更美观的默认样式。
●Cython内置支持NumPy数组,它已经逐渐成为编写高效运算扩展库的工具。
●NumPy、SciPy等也经历了几个版本的更新,许多计算变得更快捷,功能也更加丰富。
●WinPython、Anaconda等新兴的Python集成环境无须安装,使得开发与共享Python程序更方便快捷。
本书第2版紧随各个扩展库的发展,将、实用的内容呈现给读者。除了数值计算之外,本书还包含了界面制作、三维可视化、图像处理、提高运算效率等方面的内容。后一章综合使用本书介绍的各个扩展库,完成几个有趣的实例项目。
本书完全采用IPython Notebook编写,保证了书中所有代码及输出的正确性。附盘中附带所有章节的Notebook以及便携式运行环境WinPython,以方便读者运行书中所有实例。
本书适合于工科高年级本科生、研究生、工程技术人员以及计算机开发人员阅读,也适合阅读过第1版的读者了解各个扩展库的进展,进一步深入学习。
阅读本书的读者需要掌握Python语言的一些基础知识,Cython章节需要读者能够阅读C语言代码。
除封面署名的作者外,参加本书编写的人员还有张佑林、张东等人,在此一并表示感谢。
第1章 Python科学计算环境的安装与简介 1
1.1 Python简介 1
1.1.1 Python 2还是Python 3 1
1.1.2 开发环境 2
1.1.3 集成开发环境(IDE) 5
1.2 IPython Notebook入门 9
1.2.1 基本操作 10
1.2.2 魔法(Magic)命令 12
1.2.3 Notebook的显示系统 20
1.2.4 定制IPython Notebook 24
1.3 扩展库介绍 27
1.3.1 数值计算库 27
1.3.2 符号计算库 28
1.3.3 绘图与可视化 28
1.3.4 数据处理和分析 29
1.3.5 界面设计 30
1.3.6 图像处理和计算机视觉 31
1.3.7 提高运算速度 31
第2章 NumPy-快速处理数据 33
2.1 ndarray对象 33
2.1.1 创建 34
2.1.2 元素类型 35
2.1.3 自动生成数组 37
2.1.4 存取元素 40
2.1.5 多维数组 43
2.1.6 结构数组 47
2.1.7 内存结构 50
2.2 ufunc函数 56
2.2.1 四则运算 58
2.2.2 比较运算和布尔运算 59
2.2.3 自定义ufunc函数 61
2.2.4 广播 62
2.2.5 ufunc的方法 66
2.3 多维数组的下标存取 68
2.3.1 下标对象 68
2.3.2 整数数组作为下标 70
2.3.3 一个复杂的例子 72
2.3.4 布尔数组作为下标 73
2.4 庞大的函数库 74
2.4.1 随机数 74
2.4.2 求和、平均值、方差 77
2.4.3 大小与排序 81
2.4.4 统计函数 86
2.4.5 分段函数 89
2.4.6 操作多维数组 92
2.4.7 多项式函数 96
2.4.8 多项式函数类 98
2.4.9 各种乘积运算 103
2.4.10 广义ufunc函数 106
2.5 实用技巧 110
2.5.1 动态数组 110
2.5.2 和其他对象共享内存 112
2.5.3 与结构数组共享内存 115
第3章 SciPy-数值计算库 117
3.1 常数和特殊函数 117
3.2 拟合与优化-optimize 119
3.2.1 非线性方程组求解 120
3.2.2 小二乘拟合 121
3.2.3 计算函数局域小值 125
3.2.4 计算全域小值 127
3.3 线性代数-linalg 128
3.3.1 解线性方程组 129
3.3.2 小二乘解 130
3.3.3 特征值和特征向量 132
3.3.4 奇异值分解-SVD 134
3.4 统计-stats 136
3.4.1 连续概率分布 136
3.4.2 离散概率分布 139
3.4.3 核密度估计 140
3.4.4 二项分布、泊松分布、伽玛分布 142
3.4.5 学生t-分布与t检验 147
3.4.6 卡方分布和卡方检验 151
3.5 数值积分-integrate 154
3.5.1 球的体积 154
3.5.2 解常微分方程组 156
3.5.3 ode类 157
3.5.4 信号处理-signal 164
3.5.5 中值滤波 164
3.5.6 滤波器设计 165
3.5.7 连续时间线性系统 167
3.6 插值-interpolate 172
3.6.1 一维插值 172
3.6.2 多维插值 177
3.7 稀疏矩阵-sparse 181
3.7.1 稀疏矩阵的存储形式 182
3.7.2 短路径 183
3.8 图像处理-ndimage 186
3.8.1 形态学图像处理 187
3.8.2 图像分割 192
3.9 空间算法库-spatial 195
3.9.1 计算近旁点 195
3.9.2 凸包 199
3.9.3 沃罗诺伊图 201
3.9.4 德劳内三角化 204
第4章 matplotlib-绘制精美的图表 207
4.1 快速绘图 207
4.1.1 使用pyplot模块绘图 207
4.1.2 面向对象方式绘图 210
4.1.3 配置属性 211
4.1.4 绘制多子图 212
4.1.5 配置文件 215
4.1.6 在图表中显示中文 217
4.2 Artist对象 220
4.2.1 Artist的属性 221
4.2.2 Figure容器 223
4.2.3 Axes容器 224
4.2.4 Axis容器 226
4.2.5 Artist对象的关系 230
4.3 坐标变换和注释 231
4.3.1 4种坐标系 234
4.3.2 坐标变换的流水线 236
4.3.3 制作阴影效果 240
4.3.4 添加注释 241
4.4 块、路径和集合 243
4.4.1 Path与Patch 243
4.4.2 集合 245
4.5 绘图函数简介 255
4.5.1 对数坐标图 255
4.5.2 极坐标图 256
4.5.3 柱状图 257
4.5.4 散列图 258
4.5.5 图像 259
4.5.6 等值线图 261
4.5.7 四边形网格 264
4.5.8 三角网格 267
4.5.9 箭头图 269
4.5.10 三维绘图 273
4.6 matplotlib技巧集 274
4.6.1 使用agg后台在图像上绘图 274
4.6.2 响应鼠标与键盘事件 277
4.6.3 动画 285
4.6.4 添加GUI面板 288
第5章 Pandas-方便的数据分析库 291
5.1 Pandas中的数据对象 291
5.1.1 Series对象 291
5.1.2 DataFrame对象 293
5.1.3 Index对象 297
5.1.4 MultiIndex对象 298
5.1.5 常用的函数参数 300
5.1.6 DataFrame的内部结构 301
5.2 下标存取 303
5.2.1 []操作符 304
5.2.2 .loc[]和.iloc[]
— 没有更多了 —
以下为对购买帮助不大的评价