内容提要 《非线性物理科学:微分方程群性质理论讲义》提供了确定和利用微分方程对称性的李群方法简明和清晰的介绍,并提供了在气体动力学和其他非线性模型中的大量应用,以及《非线性物理科学:微分方程群性质理论讲义》作者在这个经典领域的贡献。《非线性物理科学:微分方程群性质理论讲义》中还包含在其他现代书籍中不曾涉及的一些非常有刚的材料,例如:Ovsyannikow教授发展的部分不变解理论,该理论提供了求解非线性微分方程和研究复杂数学模型强有力的工具。 目录 Editor's prefacePreface1 One-parameter continuous transformation groups admitted bydifferential equations1.1 One-parameter continuous transformation group1.1.1 Definitio1.1.2 Canonical parameter1.1.3 Examples1.1.4 Auliary functions of groups1.2 Infinitesimal operator of the group1.2.1 Definition and examples1.2.2 Transformation of functions1.2.3 Change of coordinates1.3 Invariants and invariant manifolds1.3.1 Invariants1.3.2 Invariant manifolds1.3.3 Invariance of regularly defined manifolds1.4 Theory of prolongatio1.4.1 Prolongation of the space1.4.2 Prolonged group1.4.3 First prolongation of the group operator1.4.4 Second prolongation of the group operator1.4.5 Properties of prolongations of operators1.5 Groups admitted by differentialequations1.5.1 Determining equations1.5.2 First-order ordinary differential equations1.5.3 Second-orderordinarydifferentialequations1.5.4 Heat equatio1.5.5 Gasdynamic equations1.6 Lie algebra of operators1.6.1 Commutator. Definition of a Lie algebra1.6.2 Properties of commutator1.6.3 Lie algebra of admitted operators2 Lie algebras and local Lie groups2.1 Lie algebra2.1.1 Definition and examples2.1.2 Subalgebra and ideal2.1.3 Structure of finite-dimensionalLie algebras2.2 Adjoint algebra2.2.1 Inner derivatio2.2.2Adjoint algebra2.2.3 Inner automorphisms of a Lie algebra.2.3 Local Lie group2.3.1 Coordinates in a group2.3.2 Subgroups2.3.3 Canonical coordinates of the first kind2.3.4 First fundamental theorem of Lie2.3.5 Second fundamental theorem of Lie2.3.6 Properties ofcanonicalcoordinate systems of the firstkind2.3.7 Third fundamental theorem of Lie2.3.8 Lie algebra of a local Lie group2.4 Subgroup, normal subgroup and factor group2.4.1 Lemma on commutator2.4.2 Subgroup2.4.2 Subgroup2.4.3 Normal subgroup2.4.4 Factor grop2.5 Inner automorphisms of a group and of its Lie algebra2.5.1 Inner automorphism.2.5.2 Lie algebra of GA and adjoint algebra of Lr2.6 Local Lie group of transformations2.6.1 Introductio2.6.2 Lie's first theorem.2.6.3 Lie's second theorem2.6.4 Canonical coordinates of the second kind3 Group invariant solutions of differential equations3.1 Invariants of the group GNr3.1.1 Invariance criterio3.1.2 Functional independence3.1.3 Linearly unconnected operators3.1.4 Integration of jacobian systems3.1.5 Computation ofinvariance…… 作者介绍 L.V.Ovsyannikov,教授是20世纪60年代促进恢复微分方程群分析研究的领军科学家。他在不变解和部分不变解理论、微分方程群分类以及流体力学中的应用方面作出了基础性的贡献。在Ovsyannikow教授的影响下,李群分析目前已经发展成应用数学方面相当活跃的领域。 序言
以下为对购买帮助不大的评价