内容提要 《Chemical Engineering Thermodynamics》(化工热力学)共8章,章介绍了化工热力学的用途、研究内容、研究特点和基本定律;第2章交代了纯物质的相态变化、纯物质的p-V-T关系、气体的状态方程和对比态原理及其应用;第3章详细讨论了热力学性质间的关系和热力学性质的计算;第4章介绍了剩余性质的定义,阐述了多组分混合物的热力学、混合物的实际热力学行为,不同二元混合物的混合摩尔体积、偏摩尔吉布斯能、偏摩尔体积和焓的实验测定,从实验数据计算无限稀释部分摩尔焓、混合物中组分的吉布斯能和逸度的估计以及偏摩尔吉布斯能和逸度;第5章全面介绍了相平衡判据的数学表达式、化学势和逸度及其在相平衡建模中的应用,讲述了测定液体和固体逸度、分布系数、相对挥发性以及热力学一致性检验。第5章主要涉及了相平衡的相关定律和方程;第6章解释了热机的不可逆性的比率、系统的?变化、?在压缩过程中发生变化、?递减原理与?破坏以及?衡算及?效率;第7章介绍了用简单模型分析制冷循环以及卡诺循环和它在工程中的价值,并对蒸汽和联合动力循环、卡诺蒸汽循环、制冷循环和热泵系统进行了相应的解释;第8章讨论了化学反应平衡基础、化学反应的平衡准则、平衡常数和工艺参数等条件对化学平衡组成的影响。 《Chemical Engineering Thermodynamics》注重理论原理与实际应用的结合,不仅能够为读者提供丰富的热力学基础知识,还能为经验丰富的化工工程师提供所需的专业知识。本书附有大量的例题,并且都系统地给出了解答步骤。读者能够通过本书迅速获取化工热力学的知识内容,适合自学,同时也是学习和掌握专业英语的高效途径。 《Chemical Engineering Thermodynamics》(化工热力学)可作为化工及相关专业的本科生和研究生学习化工热力学的教材,也可供化工专业的过程开发、合成、优化等领域的科研人员参考。 目录 Chapter 1 Introductio1 1.1 The Category of Chemical Engineering Thermodynamics 1 1.2 The Role of Thermodynamics iChemical Engineering 2 1.3 Fundamental Law of Thermodynamics 3 1.4 Applicatioof Chemical Engineering Thermodynamics 5 1.5 The State and System 7 Chapter 2 The Physical Properties of Pure Substances 10 2.1 Pure Substance 10 2.2 Phases of Pure Substance 10 2.3 Phase-change Processes of Pure Substances 11 2.4 Property Diagrams for Phase-Change Processes 13 2.4.1 The T-V Diagram 14 2.4.2 The p-V Diagram 15 2.4.3 The p-T Diagram 17 2.4.4 The p-V-T Surface 17 2.5 Equatioof State 22 2.5.1 The Ideal-Gas Equatioof State 22 2.5.2 Nonideality of Gases 23 2.6 Other Equations of State 23 2.6.1 The vader Waals Equatioof State 24 2.6.2 Redlich-Kwong (RK) Equatioof State 25 2.6.3 The Soave-Redlich-Kwong (SRK) Equatioof State 25 2.6.4 Peng-Robinso(PR) Equatioof State 26 2.6.5 Virial Equatioof State 26 2.6.6 Multiparameter Equatioof State 27 2.7 Principle of Corresponding States and Generalized Associatio33 2.7.1 Principle of Corresponding States 34 2.7.2 Principle of Corresponding States with Two Parameters 34 2.7.3 Principle of Corresponding States with Three Parameters 35 2.7.4 Generalized Compressibility Factor Graph Method 35 2.7.5 Generalized Virial Coefficient Method 36 2.8 Applicatioof AspePlus iCalculatioof Thermodynamic Equatioof State 39 EXERCISES 43 REFERENCES 44 Chapter 3 Thermodynamic Properties of Pure Fluids 45 3.1 Mathematical Relationship betweeFunctions 45 3.1.1 Partial Differentials 45 3.1.2 Partial Differential Relations 47 3.1.3 Fundamental Thermodynamic Relatio48 3.2 The Maxwell Relations 49 3.3 The ClapeyroEquatio51 3.4 General Relations for dU, dH, dA, and dG 52 3.5 Joule-ThomsoCoefficient 58 3.6 The ?H, ?U, and ?S of Real Gas 60 3.7 Applicatioof AspeiThermodynamic Properties 62 CONCLUSION 64 EXERCISES 66 REFERENCES 68 Chapter 4 The Thermodynamics of Multicomponent Mixtures 69 4.1 Excess Property 70 4.2 Properties Change oMing 71 4.3 Partial Molar Gibbs Free Energy 78 4.4 Gibbs-Duhem Equatio79 4.5 The Experimental Measurement of Partial Molar Volume and Enthalpy 82 4.6 Gibbs Free Energy and Fugacity of a Component ia Mixture 89 4.6.1 Ideal Gas Mixture 89 4.6.2 Ideal Mixture and Excess Mixture Properties 91 4.6.3 Partial Molar Gibbs Free Energy and Fugacity 95 4.7 Applicatioof AspePlus to Thermodynamic Properties of multicomponent Mixtures 100 CONCLUSION 103 EXERCISES 103 REFERENCES 105 Chapter 5 Phase Equilibrium 106 5.1 Phase Equilibrium for a Single-Component System 106 5.1.1 Mathematical Models of Phase Equilibrium 106 5.1.2 Fugacity and Its Use iModeling Phase Equilibrium 117 5.2 Vapor-Liquid Equilibrium 121 5.2.1 Motivational Example 121 5.2.2 Raoult’s Law and the Presentatioof Data 123 5.2.3 Mixture Critical Points 131 5.2.4 Lever Rule and the Flash Problem 132 5.3 Theory and Model of Vapor Liquid Equilibrium of Mixtures: Modified Raoult’s law Method 134 5.3.1 Examples of Incentives 134 5.3.2 Phase Equilibrium of Mixture 135 5.3.3 Fugacity of Mixture 138 5.3.4 Gamma-Phi Modeling 142 5.3.5 Raoult’s law Revisited 143 5.3.6 Henry’s law 144 5.4 Wilsoand VaLaar Equatio155 5.4.1 WilsoEquatio155 5.4.2 Relationship betweeActivity Coefficient and Temperature and Pressure 157 5.4.3 VaLaar Equatioand Regular SolutioTheory 160 5.4.4 VaDer Waals One-Fluid Ming Rules 161 5.5 Supplementary SimulatioExamples 166 5.5.1 Vapor-Liquid Equilibrium Calculations Using Activity Coefficient Models 166 5.5.2 Vapor-Liquid Equilibrium Calculations Using aEquatioof State 179 5.5.3 Predictioof Liquid-Liquid and Vapor-Liquid-Liquid Equilibrium 192 EXERCISES 196 REFERENCES 198 Chapter 6 Energy Analysis of Chemical Process 200 6.1 The Definitioof Entropy Exergy 200 6.2 Exergy (Work Potential) Associated with Kinetic and Potential Energy 201 6.3 Reversible Work and Irreversibility 203 6.4 Second-law Efficiency 204 6.5 Exergy Change of a System 206 6.5.1 Exergy of a Fixed Mass: Nonflow (or Closed System) Exergy 206 6.5.2 Exergy of a Flow Stream: Flow (or Stream) Exergy 208 6.6 Exergy Transfer by heat, work, and mass 212 6.6.1 Exergy Transfer by Heat, Q 212 6.6.2 Exergy Transfer from Work, Xwork 213 6.6.3 Exergy Transfer by Mass, m 214 6.7 The Decrease of Exergy Principle and Exergy Destructio214 6.8 Exergy Balance: Closed Systems 219 6.9 Exergy Balance: Control Volumes 227 6.9.1 Exergy Balance for Steady-Flow Systems 228 6.9.2 Second-Law Efficiency of Steady-Flow Devices 230 6.10 Chemical Process Energy Analysis and AspePlus 233 EXERCISES 233 REFERENCES 235 Chapter 7 Thermodynamic Processes and Cycles 237 7.1 Chemical Process Desig237 7.2 Real Heat Engines 239 7.2.1 Comparing the Carnot Cycle with the Rankine Cycle 240 7.2.2 DesigVariations ithe Rankine Heat Engine 241 7.3 The Vapor-CompressioCycle 245 7.4 Power Cycle and RefrigeratioCycle 246 7.4.1 Thermodynamic Cycles 246 7.4.2 Property Diagrams 248 7.4.3 The Carnot Cycle and Its Value iEngineering 248 7.4.4 Air-standard Assumptions 250 7.4.5 Rankine Cycle: The Ideal Cycle for Vapor Power Cycles 251 7.4.6 Energy Analysis of the Ideal Rankine Cycle 252 7.4.7 The Ideal Re-heat Rankine Cycle 254 7.4.8 The Ideal Regenerative Rankine Cycle 255 7.5 Second-Law Analysis of Vapor Power Cycles 255 7.5.1 Combined Gas-Vapor Power Cycles 257 7.5.2 RefrigeratioCycles 258 7.5.3 Refrigerators and Heat Pumps 260 7.5.4 The Reversed Carnot Cycle 261 7.6 Applicatioof Thermodynamic Processes and Cycles iAspePlus 262 EXERCISES 267 REFERENCES 270 Chapter 8 Chemical ReactioEquilibrium 271 8.1 Motivational Example: Propylene from Propane 272 8.2 Chemical ReactioStoichiometry 278 8.2.1 Extent of Reactioand Time-Independent Mole Balances 279 8.2.2 Extent of Reactioand Time-Dependent Material Balances 281 8.3 The Equilibrium CriterioApplied to a Chemical Reactio282 8.3.1 The Equilibrium Constant 282 8.3.2 Accounting for the Effects of Pressure 285 8.3.3 Accounting for Changes iTemperature 286 8.3.4 Reference States and Nomenclature 292 8.4 Multiple ReactioEquilibrium 293 8.5 Summary 297 8.6 Chemical ReactioEquilibrium Simulatio298 EXERCISES 301 REFERENCES 303 作者介绍 王英龙,青岛科技大学化工学院,教授,王英龙,男。教授,青岛科技大学化工学院。主要教学经历: 化工工艺模拟与计算,2021,本科生,24学时,青岛科技大学 化工原理,2006-2021,本科生,32学时,青岛科技大学 化工热力学,2018-2020,本科生,56学时,青岛科技大学 化工原理实验,2006-2020,本科生,16学时,青岛科技大学 化工过程模拟,2015-2020,研究生,32学时,青岛科技大学 学科前沿讲座,2018-2020,博士生,40学时,青岛科技大学 教学成果: 1. 化工类专业硕士研究生科学认知与工程实践贯通式培养模式,2017年山东省第八届高等教育教学成果奖,一等奖(1/9)。 2. 《含低碳醇二元共沸物共沸特性的QSPR模型及其特殊精馏分离策略》(研究生:梁石生),2018年山东省硕士学位论文。 3. 《混合萃取剂分离THF-乙醇-水三元共沸物系的协同效应及工艺集成与控制》(研究生:赵永滕),2019年山东省硕士学位论文。 4. 多元共沸物节能分离技术及其工业应用(研究生:马康),2018年山东省研究生科技创新成果奖。 5. 乙二醇萃取精馏分离乙醇-四氢呋喃的工程设计与控制(研究生:张青),2015年山东省专业学位研究生实践成果奖。 序言
以下为对购买帮助不大的评价