全新正版书籍,24小时发货,可开发票。
¥ 25.3 7.2折 ¥ 35 全新
库存3件
作者(美)克朗兹 著
出版社世界图书出版公司
ISBN9787510048036
出版时间2012-09
装帧平装
开本其他
定价35元
货号23042282
上书时间2025-01-06
The implicit function theorem is. along with its close cousinthe inverse func- tion theorem, one of the most important, and oneof the oldest, paradigms in modcrn mathemarics. One can see thegerm of the idea for the implicir func tion theorem in the writingsof Isaac Newton (1642-1727), and Gottfried Leib-niz's (1646-1716)work cxplicitty contains an instance of implicitdifferentiation.
Whilc Joseph Louis Lagrange (1736-1813) found a theorcm that isessentially a version of the inverse function theorem, ic wasAugustin-Louis Cauchy (1789-1857) who approached the implicitfunction theorem with mathematical rigor and it is he who isgencrally acknowledgcd as the discovcrer of the theorem. InChap-ter 2, we will give details of the contributions of Newton,Lagrange, and Cauchy to the development of the implicit functiontheorem.
Preface
1 IntroductIon to the Implicit Function Theorem
1.1 Implicit Functions
1.2 An Informal Version ofthe Implicit Function Theorem
1.3 Thelmplicit Function Theorem Paradigm
2 History
2.1 Historicallntroduction
2.2 Newton
2.3 Lagrange
2.4 Cauchy
3 Basfcldeas
3.1 Introduction
3.2 The Inductive Proof of the Implicit Function Theorem
3.3 The Classical Approach to the Implicit Function Theorem
3.4 The Contraction Mapping Fixed Point Principle
3.5 The Rank Theorem and the Decomposition Theorem
3.6 A Counterexample
4 Applications
4.1 Ordinary Differential Equations
4.2 Numerical Homotopy Methods
4.3 Equivalent Definitions of a Smooth Surface
4.4 Smoothncss ofthc Distance Function
5 VariatIons and Genera Hzations
5.1 The Weicrstrass Preparation Theorem
5.2 ImplicU Function Theorems without Differenriability
5.3 An Inverse Function Theorcm for Continuous Mappings
5.4 Some Singular Cases of the Implicit Function Theorem
6 Advanced Impllclt Functlon Theorems
6.1 Analyticlmplicit Function Theorems
6.2 Hadamard's Globallnverse Function Thecntm
6.3 The Implicit Function Theorem via the Newton-Raphson
Method
6.4 The Nash-Moscrlmplicit Function Theorem
6.4.1 Introductory Remarks
6.4.2 Enunciation of the Nash-MoserThcorem
6.4.3 First Step of the ProofofNash-Moscr
6.4.4 The Crux ofthe Matter
6.4.5 Construction ofthe Smoothing Operators
6.4.6 A UsefulCorollary
Glossary
Bibliography
Index
The implicit function theorem is. along with its close cousin
the inverse func- tion theorem, one of the most important, and one
of the oldest, paradigms in modcrn mathemarics. One can see the
germ of the idea for the implicir func tion theorem in the writings
of Isaac Newton (1642-1727), and Gottfried Leib-niz's (1646-1716)
work cxplicitty contains an instance of implicit
differentiation.
Whilc Joseph Louis Lagrange (1736-1813) found a theorcm that is
essentially a version of the inverse function theorem, ic was
Augustin-Louis Cauchy (1789-1857) who approached the implicit
function theorem with mathematical rigor and it is he who is
gencrally acknowledgcd as the discovcrer of the theorem. In
Chap-ter 2, we will give details of the contributions of Newton,
Lagrange, and Cauchy to the development of the implicit function
theorem.
— 没有更多了 —
以下为对购买帮助不大的评价