全新正版书籍,24小时发货,可开发票。
¥ 25.7 5.2折 ¥ 49.8 全新
库存25件
作者(日)坂本真树 著(日)坂本真树 著
出版社化学工业出版社
ISBN9787122377104
出版时间2021-01
装帧平装
开本32开
定价49.8元
货号29190810
上书时间2024-11-24
近年来,人工智能相关书籍如雨后春笋般出版问世,其销量亦势头甚猛。原本我是没有十分积极地想要去写一本人工智能科普书的。我想着,在这种时候再写人工智能的书,是不是已经有些迟了呢。就在这个时候,与我曾合作过的欧姆社提议,“既然老师您是人工智能学会的学会杂志编委,那么能否从您的角度出发,写一本人工智能相关的书呢?”我的性格是很难拒绝他人请求的(当然,在由于某些不可抗力的原因、无法完成的时候,我还是会拒绝的),我又觉得,别人对我的请求其实是机会,于是我便充满谢意地接受了这次邀约。
既然说要写一本“从我的角度出发的人工智能书”,我初想到的,是立足于以下两篇论文来写一本书,即获得了2014年度人工智能学会论文奖的《推测象声词微妙印象区别的系统》(人工智能学会论文集29卷1号)及《生成匹配用户感性印象的系统》(人工智能学会论文集30卷1号)。但是这又专业性过强,后我决定将写作方向由专业级转向入门科普级。
本书旨在令完全不了解人工智能的读者也能够轻松阅读并学习。不论你是希望将来学习人工智能专业的高中生,是对人工智能感兴趣的文科生,是无法忽视人工智能存在的企业人员,还是仍然希望活跃在社会的老年人;不论你现在是在理工类院校开始从事相关信息研究,或是对于你的孩子将要生活在人工智能社会而对他的未来充满担忧,均可阅览本书。可以说是男女老少均可阅读。
虽说本书写作的初衷是让读者能够轻松读懂,但是关于深度学习的内容也是一定会写到的,于是第3章的内容也随之变难了。这一部分的内容,不论是在哪一本入门书中都是很难的,这也令我们这些入门书的作者十分头疼。就在这种心情之下,我将书稿发给了欧姆社。多亏了这些妙趣横生的插图,让本书能够给人以简单易懂的印象。对此,我深表感谢。
在初稿完成后,我实验室里的学生川岛卓也君帮我通读了一遍全书。川岛卓也君的毕业论文是利用深度学习来完成的。他指出了本书的疑难之处,并就他本人在意的地方提出了意见。感谢川岛君,在完成了毕业论文、本应放飞自我的时期里,认真地研读我的书并积极思考,给出意见。
后,由衷感谢欧姆社编辑部的各位老师,在短时间内推进企划;由衷感谢sawa公司的泽田老师,为本书画出如此精美的插画。
希望借助本书的微薄之力,能够让更多的人关注到人工智能。
坂本真树
《漫话人工智能:坂本真树老师带你轻松读懂人工智能》将读者群设定为普通大众,旨在令不熟悉人工智能专业词汇、没有专业背景的普通读者也能够读懂本书。书中所选取的都是人工智能基础研究相关的代表性主题,也是读者想要了解的问题,如人工智能是什么时候出现的,人工智能会超越人类吗,什么易导入人工智能,什么不易导入人工智,怎样从信息角度来学习人工智能,人工智能应用的领域有哪些等等。
本书语言通俗易懂,采用大量插画进行讲解,一一为读者解答了人工智能的问题,不论是对人工智能感兴趣的非专业人士,还是准备从事人工智能相关工作的学生,都能通过本书了解人工智能的方方面面。
第1章 人工智能是什么?
1.1 人工智能是什么时候出现的?002
● 人的智能?人工智能?003
● 图灵测试:哪个是人类?004
● 寂寞的人工智能?!006
● 人和人工智能的区别007
● 伴随着计算机发展009
● AI的历史:达特茅斯会议010
● AI的历史:次人工智能热潮011
● AI的历史:第二次人工智能热潮013
● 现在,第三次人工智能热潮!015
1.2 这是人工智能?016
● 人工智能与机器人的区别017
● 机器人研究?人工智能研究?019
● 人工智能需要身体吗?020
● 第1级人工智能023
● 第2级人工智能024
● 第3级人工智能026
● 第4级人工智能,专用人工智能027
● 第5级人工智能,通用人工智能028
1.3 人工智能会超越人类吗?030
● 奇点是什么?031
● 奇点:可怕?不可?032
● 如何实现通用人工智能?033
● AI导致人类灭亡的可能性有多大?034
● AI之下我们的未来会怎样改变呢?036
● 将来,哪些职业会消失?037
● 将来,哪些职业会留下来?039
第2章 容易导入人工智能的事物和不容易导入人工智能的事物
2.1 容易导入人工智能的事物042
● 可以导入网络上的任何信息043
● 0和1数字数据044
● 各种数据(语言、动画、音频)046
● 让计算机拥有视觉048
● 数码相机的演变049
● 像素提高,超过人类?!050
● 世界共享的数据051
● 图像识别的竞赛:ILSVRC052
● 让计算机拥有听觉054
● 使用两个麦克风的语音识别055
● 多个麦克风056
● 把语音转化成文字?058
● 声学模型和语言模型060
2.2 不容易导入人工智能的事物 062
●“意思”很难懂…… 063
● 什么是语义网络? 064
● 不理解“意思”也能够做出回答? 065
● 什么是潜在语义分析? 067
● 为什么Torobo-kun 选择放弃 067
● 如果要变聪明,需要五感齐备吗? 069
● 人工智能的味觉是什么? 070
● 人工智能的嗅觉是什么? 070
● 将来会怎么处理气味?072
● 人工智能的触觉是什么?073
● 实现触觉真的很难!074
第3章 人工智能是怎样从信息中学习的?
3.1 什么是机器学习? 078
● 让机器设备(计算机)也能够学习! 079
● 什么是监督学习? 080
● 分类问题:判断垃圾邮件 082
● 回归问题:预测数值 084
● 寻找合适的线(函数)! 085
● 当心过度学习! 088
● 什么是无监督学习? 090
● 试着分组吧! 092
● k-means 分类方法 094
● 强化学习是“蜜糖”与“鞭子” 095
3.2 什么是神经网络?097
● 大脑依靠神经元运作098
● 人工神经元的构造100
● 代表了重要度和信赖度的权重102
● 赫布定律103
● 什么是感知机?104
● 线性不可分!105
● BP算法(误差反向传播算法)106
● 为了减小误差,调整权重!108
● 增加层数:信息传递不到!110
● 支持向量机的优点是什么?110
● 权衡过度学习和泛化112
3.3 深度学习有哪些厉害之处?113
● 深度学习成名的日子114
● 能够自己提取特征,厉害!115
● 4层以上的深度学习116
● 自编码的输入和输出是相同的!117
● 让输入与输出具有相同的意义118
● 或许和人越来越像?120
● 深度学习的方法120
3.4 AI三大模型中的“遗传算法”是什么?124
●AI三大模型的方方面面125
● 以达尔文的进化论为基础125
● 遗传算法的使用方法126
第4章 人工智能的应用实例
4.1 人工智能的进化在“游戏”中的应用实例130
● 游戏AI 的进化历史130
●人类与AI 对战(国际象棋篇)132
●人类与AI 对战(日本象棋篇)133
●人类与AI 对战(围棋篇)134
4.2 第三次AI热潮的导火索在“图像”领域的应用实例136
● 谷歌的猫136
● 图像识别的发展138
● 医疗领域的应用(庄野实验室)139
● 医疗领域的应用(恶性黑色素瘤的判别) 140
● 医疗领域的应用(癌症的检测)141
● 为了提高诊断的准确度142
4.3 “自动驾驶AI”的实际应用143
● 自动到什么程度?143
● 为了实现自动驾驶145
● 自动驾驶的训练步骤146
● 为了掌握位置和情况147
● 事故的原因究竟是什么? 149
4.4 “对话AI”的应用实例150
● 为了和计算机对话150
●“有知识”对话AI152
●“无知识”对话AI154
● 制造对话的三种技术155
● 为了自然的对话156
4.5 “遗传算法”在“拟声拟态词”上的应用实例158
● 贴近人心的拟声拟态词158
● 生成拟声拟态词的系统159
● 拟声拟态词的生成160
● 在优化过程中要做些什么呢162
4.6 AI在“艺术”领域的实践164
●AI在艺术方面的挑战(小说篇)164
●AI小说项目166
●AI在艺术方面的挑战(绘画篇)168
●AI在艺术方面的挑战(作曲篇)170
结语171
参考文献174
索引176
《漫话人工智能:坂本真树老师带你轻松读懂人工智能》将读者群设定为普通大众,旨在令不熟悉人工智能专业词汇、没有专业背景的普通读者也能够读懂本书。书中所选取的都是人工智能基础研究相关的代表性主题,也是读者想要了解的问题,如人工智能是什么时候出现的,人工智能会超越人类吗,什么易导入人工智能,什么不易导入人工智,怎样从信息角度来学习人工智能,人工智能应用的领域有哪些等等。
本书语言通俗易懂,采用大量插画进行讲解,一一为读者解答了人工智能的问题,不论是对人工智能感兴趣的非专业人士,还是准备从事人工智能相关工作的学生,都能通过本书了解人工智能的方方面面。
★书中介绍了人工智能的方方面面,包括AI的历史、现状、未来、发展、工作原理、应用实例;
★通俗易懂的语言 轻松愉快的漫画,增加了阅读的趣味性;
★读者对象为普通大众,即使不熟悉专业词汇,没有专业背景,也能读懂本书;
★总之就是很有趣又能学到知识的一本书。
第1章 人工智能是什么?1.1 人工智能是什么时候出现的?002● 人的智能?人工智能?003● 图灵测试:哪个是人类?004● 寂寞的人工智能?!006● 人和人工智能的区别007● 伴随着计算机发展009● AI的历史:达特茅斯会议010● AI的历史:*次人工智能热潮011● AI的历史:第二次人工智能热潮013● 现在,第三次人工智能热潮!0151.2 这是人工智能?016● 人工智能与机器人的区别017● 机器人研究?人工智能研究?019● 人工智能需要身体吗?020● 第1级人工智能023● 第2级人工智能024● 第3级人工智能026● 第4级人工智能,专用人工智能027● 第5级人工智能,通用人工智能0281.3 人工智能会超越人类吗?030● 奇点是什么?031● 奇点:可怕?不可?032● 如何实现通用人工智能?033● AI导致人类灭亡的可能性有多大?034● AI之下我们的未来会怎样改变呢?036● 将来,哪些职业会消失?037● 将来,哪些职业会留下来?039第2章 容易导入人工智能的事物和不容易导入人工智能的事物2.1 容易导入人工智能的事物042● 可以导入网络上的任何信息043● 0和1数字数据044● 各种数据(语言、动画、音频)046● 让计算机拥有视觉048● 数码相机的演变049● 像素提高,超过人类?!050● 世界共享的数据051● 图像识别的竞赛:ILSVRC052● 让计算机拥有听觉054● 使用两个麦克风的语音识别055● 多个麦克风056● 把语音转化成文字?058● 声学模型和语言模型0602.2 不容易导入人工智能的事物 062●“意思”很难懂…… 063● 什么是语义网络? 064● 不理解“意思”也能够做出回答? 065● 什么是潜在语义分析? 067● 为什么Torobo-kun 选择放弃 067● 如果要变聪明,需要五感齐备吗? 069● 人工智能的味觉是什么? 070● 人工智能的嗅觉是什么? 070● 将来会怎么处理气味?072● 人工智能的触觉是什么?073● 实现触觉真的很难!074第3章 人工智能是怎样从信息中学习的?3.1 什么是机器学习? 078● 让机器设备(计算机)也能够学习! 079● 什么是监督学习? 080● 分类问题:判断垃圾邮件 082● 回归问题:预测数值 084● 寻找合适的线(函数)! 085● 当心过度学习! 088● 什么是无监督学习? 090● 试着分组吧! 092● k-means 分类方法 094● 强化学习是“蜜糖”与“鞭子” 0953.2 什么是神经网络?097● 大脑依靠神经元运作098● 人工神经元的构造100● 代表了重要度和信赖度的权重102● 赫布定律103● 什么是感知机?104● 线性不可分!105● BP算法(误差反向传播算法)106● 为了减小误差,调整权重!108● 增加层数:信息传递不到!110● 支持向量机的优点是什么?110● 权衡过度学习和泛化1123.3 深度学习有哪些厉害之处?113● 深度学习成名的日子114● 能够自己提取特征,厉害!115● 4层以上的深度学习116● 自编码的输入和输出是相同的!117● 让输入与输出具有相同的意义118● 或许和人越来越像?120● 深度学习的方法1203.4 AI三大模型中的“遗传算法”是什么?124●AI三大模型的方方面面125● 以达尔文的进化论为基础125● 遗传算法的使用方法126第4章 人工智能的应用实例4.1 人工智能的进化在“游戏”中的应用实例130● 游戏AI 的进化历史130●人类与AI 对战(国际象棋篇)132●人类与AI 对战(日本象棋篇)133●人类与AI 对战(围棋篇)1344.2 第三次AI热潮的导火索在“图像”领域的应用实例136● 谷歌的猫136● 图像识别的发展138● 医疗领域的应用(庄野实验室)139● 医疗领域的应用(恶性黑色素瘤的判别) 140● 医疗领域的应用(癌症的检测)141● 为了提高诊断的准确度1424.3 “自动驾驶AI”的实际应用143● 自动到什么程度?143● 为了实现自动驾驶145● 自动驾驶的训练步骤146● 为了掌握位置和情况147● 事故的原因究竟是什么? 1494.4 “对话AI”的应用实例150● 为了和计算机对话150●“有知识”对话AI152●“无知识”对话AI154● 制造对话的三种技术155● 为了自然的对话1564.5 “遗传算法”在“拟声拟态词”上的应用实例158● 贴近人心的拟声拟态词158● 生成拟声拟态词的系统159● 拟声拟态词的生成160● 在优化过程中要做些什么呢1624.6 AI在“艺术”领域的实践164●AI在艺术方面的挑战(小说篇)164●AI小说项目166●AI在艺术方面的挑战(绘画篇)168●AI在艺术方面的挑战(作曲篇)170结语171参考文献174索引176
— 没有更多了 —
以下为对购买帮助不大的评价