作者简介 Daniel Bump 斯坦福大学数学系教授。他的研究领域包括自守形、表示论及数论。他还是玩“Go游戏”的电脑程序GNU Go的合编者之一。他所著的重要书籍包括《自守形》,《表示论》。
目录 Preface Part Ⅰ Compact Groups 1 Haar Measure 2 Schur Orthogonality 3 Compact Operators 4 The Peter-Weyl Theorem Part Ⅱ Compact Lie Groups 5 Lie Subgroups of GL(n, C) 6 Vector Fields 7 Left-Invariant Vector Fields 8 The Exponential Map 9 Tensors and Universal Properties 10 The Universal Enveloping Algebra 11 Extension of Scalars 12 Representations of sl(2, C) 13 The Universal Cover 14 The Local Frobenius Theorem 15 Tori 16 Geodesics and Maximal Tori 17 The Weyl Integration Formula 18 The Root System 19 Examples of Root Systems 20 Abstract Weyl Groups 21 Highest Weight Vectors 22 The Weyl Character Formula 23 The Fundamental Group Part Ⅲ Noncompact Lie Groups 24 Complexiflcation 25 Coxeter Groups 26 The Borel Subgroup 27 The Bruhat Decomposition 28 Symmetric Spaces 29 Relative Root Systems 30 Embeddings of Lie Groups 31 Spin Part Ⅳ Duality and Other Topics 32 Mackey Theory 33 Characters of GL(n, C) 34 Duality Between Sk and GL(n, C) 35 The Jacobi-Trudi Identity 36 Schur Polynomials and GL(n, C) 37 Schur Polynomials and Sk 38 The Cauchy Identity 39 Random Matrix Theory 40 Symmetric Group Branching Rules and Tableaux 41 Unitary Branching Rules and Tableaux 42 Minors of Toeplitz Matrices 43 The Involution Model for Sk 44 Some Symmetric Algebras 45 Gelfand Pairs 46 Hecke Algebras 47 The Philosophy of Cusp Forms 48 Cohomology of Grassmannians Appendix: Sage References Index
以下为对购买帮助不大的评价