目录 Chapter 1 Biomass resources(Guangqing Liu and Jay J.Cheng) 1.1 Organic waste materials 1.1.1 Animal manure 1.1.2 Municipal solid organic waste 1.1.3 Industrial organic waste 1.2 Agricultural residues 1.2.1 Rice straw 1.2.2 Corn stover 1.2.3 Wheat straw 1.2.4 Other agricultural residues 1.3 Oil and grease 1.3.1 Plant oils 1.3.2 Oil-rich algae 1.3.3 Waste oils and fats 1.4 References Chapter 2 Biomass logistics(Guangqing Liu and Maurycy Daroch(microalgae)) 2.1 Feed stock production 2.1.1 Forestry waste 2.1.2 Herbaceous biomass 2.1.3 Algal biomass cultivation 2.2 Harvesting 2.2.1 Livestock and poultry manure collection 2.2.2 Collection,storage and transportation of urban household organic waste 2.2.3 Forestry biomass storage and transportation 2.2.4 Crop straw collection 2.2.5 Algae harvesting and dewatering 2.3 Transport 2.4 Storage 2.5 References Chapter 3 Biogas production(Guangqing Liu) 3.1 Anaerobic digestion:principles for biogas production 3.1.1 Two-stage theory of anaerobic digestion 3.1.2 Calculation of theoretical methane yield in anaerobic digestion 3.1.3 Microorganisms in anaerobic digestion 3.1.4 Inhibition mechanism of intermediate product in anaerobic digestion process 3.2 Biogas production at different temperatures 3.2.1 Psychrophilic anaerobic digestion 3.2.2 Mesophilic anaerobic digestion 3.2.3 Thermophilic anaerobic digestion 3.3 Anaerobic digesters 3.3.1 Anaerobic biological pond 3.3.2 Continuously stirred tank reactor 3.3.3 Up-flow anaerobic sludge blanket digester 3.3.4 Anaerobic fiher 3.3.5 Anaerobic sequencing batch reactor 3.4 H2S removal from biogas 3.5 Biogas power generation 3.5.1 Development status of China and abroad 3.5.2 Process of biogas power generation 3.6 Purification of biogas for automobile fuel production 3.6.1 Research on the CO2 scrubbing from biogas 3.6.2 Research on dehydration of biogas 3.7 References Chapter 4 Biodiesel production{Maurycy Daroch) 4.1 Principles of biodiesel production 4.2 Characterisation of biodiesel feedstocks 4.3 Transesterification 4.3.1 Transesterification process and catalysts 4.3.2 Alkaline catalysis 4.3.3 Acid catalysis 4.3.4 Enzyme:lipase 4.4 Biodiesel production from vegetable oils 4.5 Biodiesel production from waste oil and grease 4.6 Biodiesel production from microalgal oil 4.6.1 Oil extraction from microalgae 4.6.2 Chartacteristics of algal lipids and biodieset production methods 4.6.3 By-products from microalgae 4.7 Net energy production from different biodiesel processes 4.8 References Chapter 5 Bioethanol production(Sabih Farooq and Jay J.Cheng) 5.1 History of ethanol as fuel 5.2 Current ethanol production 5.2.1 Feedstock for ethanol production 5.2.2 Ethanol production processes 5.3 Environmental impact of current ethanol production 5.4 Lignoeellulosie ethanol 5.4.1 Pretreatment of lignocellulosic biomass 5.4.2 Hydrolysis 5.4.3 Fermentation and distillation 5.4.4 Future perspective 5.5 References Chapter 6 Direct combustion of biomass(Guangqing Liu and Shu Geng) 6.1 Process of biomass combustion 6.1.1 Combustion characteristics 6.1.2 Combustion conditions 6.1.3 Combustion process 6.2 Traditional biomass combustion systems 6.2.1 Biomass stove 6.2.2 Layer burn 6.2.3 Fluidized bed technology 6.3 Advanced biomass stove 6.3.1 Biomass granulation 6.3.2 Improved combustion of biomass granules 6.4 References Chapter 7 Biomass gasification(Guangqing Liu) 7.1 Principles of gasification 7.1.1 Biomass gasification process 7.1.2 Gasification indicators 7.1.3 The main factors influencing biomass gasification 7.2 Biomass gasifiers 7.2.1 Upflow gasifier 7.2.2 Downflow gasifier 7.2.3 Fluidized-bed gasifier 7.3 Syngas clean-up 7.4 Conversion of syngas to products 7.5 Net energy production from gasification processes 7.5.1 Project overview 7.5.2 Process technology 7.5.3 Results and analysis 7.5.4 Conclusion 7.6 References Chapter 8 Biomass pyrolysis(Guangqing Liu) 8.1 Principles of pyrolysis 8.1.1 Concept of pyrolysis 8.1.2 Pyrolysis mechanism 8.1.3 Influence factors 8.2 Common pyrolysis process 8.3 Pyrolysis products refinery 8.3.1 Drying 8.3.2 Crushing 8.3.3 Pyrolysis 8.3.4 The separation of product char and ash 8.3.5 The cooling of gaseous bio-oil 8.3.6 Bio-oil collection 8.4 Applications of pyrolysis products 8.4.1 Bio-oil 8.4.2 Bio-char 8.5 Net energy production from the pyrolysis processes 8.5.1 The project 8.5.2 The significance and purpose of the project 8.5.3 Technology and indicators 8.5.4 Demonstration project operation situation analysis 8.6 References Chapter 9 Environmental impacts and life cycle assessment(Ting Feng,Shu Geng and Maurycy Daroch) 9.1 Introduction to life cycle assessment 9.1.1 What is life cycle assessment? 9.1.2 The systems approach of life cycle assessment 9.1.3 The database of life cycle assessment 9.1.4 The function of life cycle assessment 9.1.5 The limitations of life cycle assessment 9.2 Life cycle assessment approaches 9.2.1 Gabi Software 9.2.2 SimaPro 9.2.3 GREET Model 9.2.4 Clarens research 9.2.5 Stephensons research 9.2.6 Sanders research 9.2.7 Summary 9.3 Life cycle assessment of different biofuel production processes 9.3.1 Life cycle assessment of energy balance 9.3.2 Carbon cycle of biofuel production 9.4 Environmental impacts of different renewable energy production processes 9.5 References
以下为对购买帮助不大的评价