• 精通TensorFlow 1.x(影印版)
21年品牌 40万+商家 超1.5亿件商品

精通TensorFlow 1.x(影印版)

全新正版 极速发货

53.45 4.9折 108 全新

库存4件

广东广州
认证卖家担保交易快速发货售后保障

作者(美)阿曼达·范丹戈(Armando Fandango)

出版社东南大学出版社

ISBN9787564182922

出版时间2019-03

装帧平装

开本16开

定价108元

货号1201871657

上书时间2024-11-21

大智慧小美丽

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
目录
Preface
Chapter 1: TensorFlow 101
What is TensorFIow?
TensorFlow core
Code warm-up - Hello TensorFIow
Tensors
Constants
Operations
Placeholders
Creating tensors from Python objects
Variables
Tensors generated from library functions
Populating tensor elements with the same values
Populating tensor elements with sequences
Populating tensor elements with a random distribution
Getting Variables with tf.get_variable()
Data flow graph or computation graph
Order of execution and lazy loading
Executing graphs across compute devices - CPU and GPGPU
Placing graph nodes on specific compute devices
Simple placement
Dynamic placement
Soft placement
GPU memory handling
Multiple graphs
TensorBoard
A TensorBoard minimal example
TensorBoard details
Summary
Chapter 2: High-Level Libraries for TensorFlow
TF Estimator - previously TF Learn
TF Slim
TFLearn
Creating the TFLearn Layers
TFLearn core layers
TFLearn convolutional layers
TFLearn recurrent layers
TFLearn normalization layers
TFLearn embedding layers
TFLearn merge layers
TFLearn estimator layers
Creating the TFLearn Model
Types of TFLearn models
Training the TFLearn Model
Using the TFLearn Model
PrettyTensor
Sonnet
Summary
Chapter 3: Keras 101
Installing Keras
Neural Network Models in Keras
Workflow for building models in Keras
Creating the Keras model
Sequential API for creating the Keras model
Functional API for creating the Keras model
Keras Layers
Keras core layers
Keras convolutional layers
Keras pooling layers
Keras locally-connected layers
Keras recurrent layers
Keras embedding layers
Keras merge layers
Keras advanced activation layers
Keras normalization layers
Keras noise layers
Adding Layers to the Keras Model
Sequential API to add layers to the Keras model
Functional API to add layers to the Keras Model
Compiling the Keras model
Training the Keras model
Predicting with the Keras model
Additional modules in Keras
Keras sequential model example for MNIST dataset
Summary
Chapter 4: Classical Machine Learning with TensorFIow
Chapter 5: Neural Networks and MLP with TensorFlow and Keras
Chapter 6: RNN with TensorFlow and Keras
Chapter 7: RNN for Time Series Data with TensorFlow and Keras
Chapter 8: RNN for Text Data with TensorFlow and Keras
Chapter 9: CNN with TensorFlow and Keras
Chapter 10: Autoencoder with TensorFlow and Keras
Chapter 11: TensorFlow Models in Production with TF Serving
Chapter 12: Transfer Learning and Pre-Trained Models
Chapter 13: Deep Reinforcement Learning
Chapter 14: Generative Adversarial Networks
Chapter 15: Distributed Models with TensorFlow Clusters
Chapter 16: TensorFlow Models on Mobile and Embedded Platforms
Chapter 17: TensorFlow and Keras in R
Chapter 18: Debuqclincl TensorFlow Models
Appendix: Tensor Processing Units
Other Books You May Enjoy
Index

内容摘要
作为一本综合指南,本书将带领你探究TensorFlow 1.x的不错特性。深入了解TensorFlow Core、Keras、TF Estimators、TFLearn、TF-Slim、Pretty Tensor以及Sonnet。通过TensorFlow和Keras的强大功能,利用转移学习、生成式对抗网络、深度强化学习等概念构建深度学习模型。在本书中,你将获得各种数据集(如MNIST、CIFAR-10、PTB、text8、COCO-Images)的实践经验。你将学习到TensorFlow1.x的不错特性,例如带有TF-Clusters的分布式TensorFlow、使用TensorFlow Serving部署生产模型、在Android和iOS平台上为移动和嵌入式设备构建和部署TensorFlow模型。你还会看到如何在R统计软件中调用TensorFlow和Keras API,了解在基于TensorFlow API的代码无法按预期工作时所需的调试技术。

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP