强化学习 人工智能如何知错能改
全新正版 极速发货
¥
41.9
6.0折
¥
69.8
全新
库存11件
作者龚超 等
出版社化学工业出版社
ISBN9787122452825
出版时间2024-08
装帧平装
开本32开
定价69.8元
货号1203323297
上书时间2024-09-05
商品详情
- 品相描述:全新
- 商品描述
-
作者简介
龚超,工学博士,清华大学日本研究中心主任助理,中日创新中心主任研究员,深圳清华大学研究院下一代互联网研发中心核心成员,海口经济学院雅和人居工程学院客座教授。中国高科技产业化研究会理事、中国自动化学会普及工作委员会委员、中国人工智能学会中小学工作委员会委员、中国青少年宫协会特聘专家、未来基因(北京)人工智能研究院首席专家、教育部教育信息化教学应用实践共同体项目特聘专家,多家500强企业数字化转型领域高级顾问。研究方向为人工智能优化算法、人工智能在数字化转型中的应用等。著有15本人工智能相关图书,在国内外期刊上发表文章共计70余篇。
王冀,工学博士,西北工业大学计算机学院助理教授,研究方向为关键数据提取及图像编码,在本领域优秀期刊、会议发表论文20余篇,参与起草行业及团体标准2项,出版专著4部。曾获PCSJ学会WBVC竞赛特别奖、图像信息媒体学会优秀发表奖。
梁霄,中国人民大学附属中学教师,任信息学竞赛教练,本科毕业于清华大学电子工程系,博士毕业于清华大学计算机系。截至2024年6月,指导学生许庭强以世界第一的成绩获得2023国际信息学奥林匹克竞赛金牌,指导学生黄洛天以总分第一名获得2023年APIO国际金牌,指导6人次获得NOI金牌(全部为国家集训队)。此外还开设了多门人工智能相关课程,致力于探索计算机科学的中小学教育。
贵宁,本科毕业于清华大学自动化系,目前在清华大学深圳研究生院智能机器人实验室攻读硕士学位。研究方向集中于鲁棒强化学习及其在机器人领域的应用。在硕士学习期间,专注于强化学习与大模型在机器人技术上的实际应用,积累了丰富的经验。
目录
第1章 强化学概述
1.1 什么是强化学
1.1.1 初识强化学
1.1.2 强化学的关键要素
1.1.3 监督、无监督与强化学
1.2 三条主线
1.2.1 试错
1.2.2 动态规划
1.2.3 时序差分
1.3 强化学的方法与应用
1.3.1 强强联合之深度强化学
1.3.2 强化学的跨界赋能
1.3.3 强化学的分类
第2章 马尔可夫与贝尔曼方程
2.1 “随机”那些事儿
2.1.1 概率的基本概念
2.1.2 网格迷宫的探索
……
内容摘要
“人工智能超入门丛书”致力于面向人工智能各技术方向零基础的读者,内容涉及数据素养,机器学习、视觉感知、情感分析、搜索算法、强化学习、知识图谱、专家系统等方向。本丛书体系完整、内容简洁、语言通俗,综合介绍了人工智能相关知识,并辅以程序代码解决问题,使得零基础的读者能够快速入门。
《强化学习:人工智能如何知错能改》是“人工智能超入门丛书”中的分册,以科普的形式讲解了强化学习的核心知识,内容生动有趣,带领读者走进强化学习的世界。本书包含强化学习方向的基础知识,如动态规划、时序差分等,让读者在开始学习时对强化学习有初步的认识;之后,通过对马尔可夫决策过程及贝尔曼方程的解读,逐渐过渡到强化学习的关键内容;同时,本书也重点解析了策略迭代与价值迭代两种核心算法,也对蒙特卡洛方法、时序差分算法、深度强化学习及基于策略的强化学习算法进行了深度剖析。本书内容结构完整、逻辑清晰、层层递进,并配有相关实例与代码,让读者在阅读学习过程中能够加深理解。
本书适合强化学习及人工智能方向的初学者阅读学习,也可供高等院校人工智能及计算机类专业的师生参考。
主编推荐
1.本书以通俗易懂的语言风格讲解了强化学习的关键核心知识;
2.本书涵盖强化学习多种关键算法,如动态规划、马尔科夫、贝尔曼方程、蒙特卡洛、深度强化学习等;
3.本书搭配实例和实现代码,读者可以直接上手实操。
— 没有更多了 —
以下为对购买帮助不大的评价