鞅与随机微分方程
全新正版 极速发货
¥
51.72
6.5折
¥
79
全新
库存4件
作者王力 编
出版社科学出版社
ISBN9787030444899
出版时间2015-06
四部分类子部>艺术>书画
装帧平装
开本B5
定价79元
货号1202637506
上书时间2024-09-04
商品详情
- 品相描述:全新
- 商品描述
-
目录
前言
主要符号对照表
第一篇 概率论基础
第1章 可测空间与乘积可测空间
1.1 σ代数理论
1.1.1 σ代数
1.1.2 单调类定理
1.2 可测空间和乘积可测空间
1.2.1 可测空间
1.2.2 有限维乘积可测空间
1.2.3 无穷维乘积可测空间
1.3 可测映射与随机变量
1.3.1 映射、可测映射
1.3.2 可测函数:随机变量
1.3.3 可测函数的运算
1.3.4 函数形式的单调类定理
1.3.5 多维随机变量
第2章 测度与积分
2.1 测度与测度空间
2.1.1 测度空间
2.1.2 代数上的测度
2.1.3 完备测度
2.1.4 分布函数及其生成的测度
2.2 随机变量的数字特征
2.2.1 积分——期望
2.2.2 随机变量的矩
2.2.3 随机向量的数学特征
2.3 随机变量及其收敛性
2.3.1 随机变量的等价类
2.3.2 几乎必然a.s.收敛
2.3.3 依概率收敛
2.3.4 依分布收敛
2.3.5 平均收敛
2.4 独立性与零一律
2.4.1 独立性
2.4.2 零一律
2.5 乘积可测空间上的测度
2.5.1 有限维乘积空间上的测度
2.5.2 无限维乘积空间上的测度
第3章 条件期望
3.1 广义测度
3.1.1 Hahn-Jordan分解
3.1.2 Lebesgue分解
3.1.3 Radon-Nikodym定理
3.2 条件期望
3.2.1 条件期望的定义
3.2.2 条件期望的性质
3.2.3 条件概率分布
3.2.4 条件独立性
第二篇 鞅
第4章 随机过程
4.1 随机过程的概念
4.2 可料过程
4.3 停时
4.3.1 连续时间随机过程的停时
4.3.2 离散时间随机过程的停时
4.3.3 停时随机变量
4.3.4 停时过程和截断过程
4.4 Lp收敛和一致可积
4.4.1 Lp收敛
4.4.2 随机变量族的一致可积
第5章 鞅
5.1 鞅、下鞅和上鞅
5.1.1 鞅、下鞅和上鞅的定义
5.1.2 鞅的凸理论
5.1.3 离散时间的增过程和Doob分解
5.1.4 鞅变换
5.2 下鞅基本不等式
5.2.1 可选停时和可选采样
5.2.2 极大极小不等式
5.2.3 上穿和下穿不等式
5.3 下鞅的收敛性
5.3.1 离散时间下鞅的收敛性
5.3.2 连续时间下鞅的收敛性
5.3.3 用一个 终元素封闭下鞅
5.3.4 离散时间L2鞅
5.4 一致可积下鞅
5.4.1 一致可积下鞅的收敛性
5.4.2 逆时间下鞅
5.4.3 无界停时的可选采样
5.4.4 停时随机变量的一致可积性
5.5 下鞅样本函数的正则性
5.5.1 右连续下鞅的样本函数
5.5.2 下鞅的右连续修正
5.6 增过程
5.6.1 关于增过程的积分
5.6.2 Doob-Meyer分解
5.6.3 正则下鞅
第三篇 随机积分
第6章 随机积分
6.1 平方可积鞅和它的二次变差过程
6.1.1 右连续L2鞅空间
6.1.2 局部有界变差过程
6.1.3 二次变差过程
6.2 关于鞅的随机积分
6.2.1 有界适应左连续简单过程关于L2鞅的随机积分
6.2.2 可料过程关于L2鞅的随机积分
6.2.3 截断被积函数和用停时停止积分
6.3 适应Brownian运动
6.3.1 独立增量过程
6.3.2 Rd值Brownian运动
6.3.3 一维Brownian运动
6.3.4 关于Brownian运动的随机积分
6.4 随机积分的推广
6.4.1 局部平方可积(L2)鞅和它们的二次变差
6.4.2 随机积分对局部鞅的推广
6.5 关于拟鞅的Ito公式
6.5.1 连续局部半鞅和关于拟鞅的Ito公式
6.5.2 关于拟鞅的随机积分
6.5.3 指数拟鞅
6.5.4 关于拟鞅的多维Ito公式
6.6 Ito随机微积分
6.6.1 随机微分的空间
6.6.2 Ito过程
6.6.3 矩不等式
6.6.4 GRONWALL型不等式
第四篇 随机微分方程理论
第7章 Ito型随机微分方程的一般理论
7.1 随机微分方程概述
7.1.1 问题介绍
7.1.2 随机微分方程的解的定义
7.1.3 随机微分方程的实例
7.2 解的存在和 性
7.2.1 解的存在和 性定理
7.2.2 解的存在和 性定理的推广
7.3 解的估计
7.3.1 解的Lp估计
7.3.2 解的几乎处处渐进估计
7.4 It型随机微分方程的近似解
7.4.1 Caratheodory近似解
7.4.2 EULER-MARUYAMA近似解
7.5 SDE和PDE:FEYNMAN-KAC公式
7.5.1 Dirichlet问题
7.5.2 初始边界值问题
7.5.3 Cauchy问题
7.6 随机微分方程解的MARKOV性
第8章 线性随机微分方程
……
内容摘要
《鞅与随机微分方程》系统地介绍概率论、鞅和随机积分及随机微分方程的基本理论,内容包括:测度与积分,独立性,Radon-Nikodym定理和条件数学期望等概率论的基础知识;停时、离散鞅和连续鞅的基本内容;鞅和连续局部半鞅随机积分的一般理论及Ito型随机微分方程的初步内容。
阅读《鞅与随机微分方程》只需要读者具有初等概率论的知识,而不需要具备测度论的知识。
《鞅与随机微分方程》可作为高等院校数学专业硕士研究生“随机分析”类课程的入门教材,也可供理科、工科、财经、师范院校相关专业的硕士研究生、博士研究生和教师参考,还可供有志从事“随机分析”研究和应用的科技工作者阅读。
— 没有更多了 —
以下为对购买帮助不大的评价