• MATLAB自动驾驶函数及应用
  • MATLAB自动驾驶函数及应用
21年品牌 40万+商家 超1.5亿件商品

MATLAB自动驾驶函数及应用

全新正版 极速发货

47.68 6.1折 78 全新

库存4件

广东广州
认证卖家担保交易快速发货售后保障

作者编者:崔胜民|责编:陈景薇

出版社化学工业

ISBN9787122373236

出版时间2020-09

装帧平装

开本其他

定价78元

货号1202137547

上书时间2024-06-06

大智慧小美丽

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
作者简介
崔胜民,哈尔滨工业大学(威海),教授,主要研究方向是汽车系统动力学与控制、新能源汽车技术和特种车辆等,主持完成各类科研项目20余项,发表论文60余篇,培养各类研究生120余人,编著有《新能源汽车技术解析》《现代汽车技术解析》《智能网联汽车新技术》《智能网联汽车先进驾驶辅助系统关键技术》《一本书读懂新能源汽车》《一本书读懂智能网联汽车》《基于MATLAB的车辆工程仿真实例》《基于MATLAB的新能源汽车仿真实例》《MATLAB编程与汽车仿真应用》等多本图书。

目录
第1章 驾驶场景 / 1
1.1 drivingScenario:创建驾驶场景                                             2
1.2 plot:绘制驾驶场景                                                         3
1.3 road:添加道路                                                           4
1.4 roadNetwork:添加道路网                                                 5
1.5 roadBoundaries:道路边界                                                 6
1.6 laneMarking:车道标线                                                   8
1.7 laneMarkingVertices:车道标线顶点                                       10
1.8 laneType:车道类型                                                     12
1.9 lanespec:车道规范                                                     13
1.10 vehicle:添加车辆                                                       14
1.11 actor:添加交通参与者                                                   17
1.12 trajectory:交通参与者轨迹                                               19
1.13 actorPoses:交通参与者姿态                                             20
1.14 actorProfiles:交通参与者特性                                           22
1.15 currentLane:当前车道                                                 23
1.16 record:交通参与者状态记录                                             25
1.17 chasePlot:绘制追逐图                                                 26
1.18 laneBoundaries:车道边界                                               28
1.19 clothoidLaneBoundary:回旋线车道边界模型                             31
1.20 computeBoundaryModel:计算车道边界点                               33
1.21 targetPoses:目标姿态                                                 34
1.22 targetOutlines:目标轮廓                                               35
1.23 updatePlots:更新驾驶场景图                                           37
1.24 radarDetectionGenerator:雷达检测器                                   38
1.25 visionDetetionGenerator:视觉检测器                                   41

第2章 鸟瞰图 / 45
2.1 birdsEyePlot:创建鸟瞰图                                                 46
2.2 coverageAreaPlotter:覆盖区绘图仪                                       47
2.3 plotCoverageArea:绘制覆盖区                                           48
2.4 detectionPlotter:检测绘图仪                                             49
2.5 plotDetection:绘制目标检测                                             50
2.6 laneBoundaryPlotter:车道边界绘图仪                                     52
2.7 plotLaneBoundary:绘制车道边界                                         53
2.8 laneMarkingPlotter:车道标线绘图仪                                       54
2.9 plotLaneMarking:绘制车道标线                                           56
2.10 pathPlotter:路径绘图仪                                                 58
2.11 plotPath:绘制路径                                                     59
2.12 trackPlotter:轨迹绘图仪                                                 61
2.13 plotTrack:绘制轨迹                                                     62
2.14 outlinePlotter:轮廓绘图仪                                               63
2.15 plotOutline:绘制轮廓                                                   65
2.16 findPlotter:查找绘图仪                                                 66
2.17 clearPlotterData:清除绘图仪数据                                       68
2.18 clearData:清除特定绘图仪数据                                         69

第3章 环境感知 / 71
3.1 monoCamera:配置单目摄像机                                           72
3.2 imageToVehicle:图像坐标转换为车辆坐标                                 73
3.3 vehicleToImage:车辆坐标转换为图像坐标                                 75
3.4 estimateMonoCameraParameters:单目摄像机外部参数                   75
3.5 birdsEyeview:利用逆透视变换创建鸟瞰图对象                             77
3.6 transformImage:将图像转换为鸟瞰图像                                   78
3.7 imageToVehicle:将鸟瞰图像坐标转换为车辆坐标                           79
3.8 vehicleToImage:将车辆坐标转换为鸟瞰图像坐标                           81
3.9 segmentLaneMarkerRidge:检测灰度图像中的车道                         82
3.10 parabolicLaneBoundary:抛物线车道边界模型                             83
3.11 findParabolicLaneBoundaries:用抛物线模型寻找车道边界                 84
3.12 insertLaneBoundary:在图像中插入车道边界                             86
3.13 cubicLaneBoundaryModel:三次方车道边界模型                         87
3.14 findCubicLaneBoundaries:用三次方模型寻找车道边界                   88
3.15 computeBoundaryModel:求车道边界坐标值                             90
3.16 evaluateLaneBoundaries:评价车道边界模型                             91
3.17 vehicleDetectorACF: ACF车辆检测器                                   92
3.18 detect: ACF目标检测                                                 93
3.19 vehicleDetectorFasterRCNN: RCNN车辆检测器                         95
3.20 peopleDetectorACF: ACF行人检测器                                   96
3.21 vision.PeopleDetector:基于HOG特征检测行人                         98
3.22 configureDetectorMonoCamera:单目摄像机目标检测器                   99
3.23 trainACFObjecDetector:训练ACF目标检测器                           101
3.24 trainFastRCNNObjectDetector:训练RCNN目标检测器                 103
3.25 trainFasterRCNNObjectDetector:训练更快的RCNN目标检测器         105
3.26 trainYOLO v2ObjectDetector:训练YOLO v2目标检测器                 106
3.27 objecDetectorTrainingData:目标检测器训练数据                         108
3.28 insertMarker:插入标记                                                 109
3.29 pointCloud:创建三维点云                                               110
3.30 pcdenoise:去除三维点云噪声                                           112
3.31 pcmerge:合并三维点云                                               113
3.32 pcnormals:估计三维点云表面法线                                     114
3.33 pctransform:三维点云变换                                             115
3.34 pcregistercpd:基于CPD的三维点云配准                               117
3.35 pcregistericp:基于ICP的三维点云配准                                 118
3.36 pcregisterndt:基于NDT的三维点云配准                               120
3.37 pcsegdist:基于欧几里得的点云分割                                     121
3.38 segmentLidarData:激光雷达数据分割                                   123
3.39 segmentGroundFromLidarData:激光雷达数据分割地面点               125
3.40 pcfitplane:三维点云平面拟合                                           126

第4章 路径规划 / 129
4.1 vehicleCostmap:车辆成本图                                             130
4.2 vehicleDimensions:车辆尺寸                                           132
4.3 checkFree:空闲区检测                                                 133
4.4 checkOccupied:占用区域检测                                           134
4.5 getCosts:获取单元格成本                                               136
4.6 setCosts:设置单元格成本                                               138
4.7 inflationCollisionChecker:碰撞检测                                       139
4.8 pathPlannerRRT: RRT* 路径规划器                                   141
4.9 plan:路径规划                                                         142
4.10 checkPathValidity:检查路径规划的有效性                               144
4.11 interpolate:沿路径插入车辆姿态                                       145
4.12 smoothPathSpline:路径平滑                                           146
4.13 lateralControllerStanley:横向控制器                                   147

第5章 目标跟踪 / 149
5.1 multObjectTracker:多目标跟踪器                                       150
5.2 objectDetection:单目标检测报告                                         151
5.3 getTrackPositions:获取跟踪位置                                         152
5.4 getTrackVelocities:获取跟踪速度                                       153
5.5 trackingKF:线性卡尔曼滤波器                                           155
5.6 predict:卡尔曼滤波器预测                                               156
5.7 correct:卡尔曼滤波器校正                                               157
5.8 initcvkf:匀速线性卡尔曼滤波器                                           158
5.9 initcakf:加速线性卡尔曼滤波器                                           159
5.10 trackingEKF:线性扩展卡尔曼滤波器                                     160
5.11 initcvekf:匀速线性扩展卡尔曼滤波器                                     161
5.12 initcaekf:加速线性扩展卡尔曼滤波器                                   162
5.13 initctekf:转向线性扩展卡尔曼滤波器                                     163
5.14 trackingUKF:无迹卡尔曼滤波器                                         164
5.15 initcvukf:匀速无迹卡尔曼滤波器                                         166
5.16 initcaukf:加速无迹卡尔曼滤波器                                         167
5.17 initctukf:转向无迹卡尔曼滤波器                                         168
5.18 constvel:匀速运动模型                                                 169
5.19 constveljac:匀速运动的雅可比矩阵                                     170
5.20 cvmeas:匀速运动测量函数                                             171
5.21 cvmeasjac:匀速运动测量函数的雅可比矩阵                             172
5.22 constacc:加速运动模型                                               173
5.23 constaccjac:加速运动的雅可比矩阵                                     174
5.24 cameas:加速运动测量函数                                             175
5.25 cameasjac:加速运动测量函数的雅可比矩阵                             176
5.26 constturn:转向运动模型                                               177
5.27 constturnjac:转向运动的雅可比矩阵                                     178
5.28 ctmeas:转向运动的测量函数                                           179
5.29 ctmeasjac:转向运动测量函数的雅可比矩阵                             180

第6章 综合应用实例 / 182
6.1 汽车自动行驶路线仿真                                                   183
6.2 驾驶场景仿真                                                           184
6.3 汽车前向碰撞仿真                                                       187
6.4 汽车自动避障仿真                                                       188
6.5 基于视觉传感器的多车辆检测和跟踪                                       190
6.6

   相关推荐   

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP