太阳能光伏组件典型环境检测技术探析
全新正版 极速发货
¥
15.77
4.4折
¥
36
全新
库存4件
作者编者:施成营//王光红|责编:钱维扬
出版社电子工业
ISBN9787121395222
出版时间2020-09
装帧其他
开本其他
定价36元
货号1202138102
上书时间2024-06-03
商品详情
- 品相描述:全新
- 商品描述
-
目录
第 1 章 太阳能电池和光伏组件的结构及工作原理 ·················································1
1.1 太阳能电池简介 ·····························································································1
1.2 光伏组件结构 ·································································································3
1.3 光伏组件的工作环境 ·····················································································5
第 2 章 光伏组件高风速砂尘检测技术 ·····································································9
2.1 中国自然环境和适用光伏组件的典型环境··················································9
2.2 高风速砂尘试验方法和检测流程································································11
2.2.1 试验设备·······························································································13
2.2.2 试验步骤·······························································································15
2.2.3 注意事项·······························································································16
2.2.4 试验设计·······························································································16
2.3 高风速砂尘对光伏组件性能影响的数据分析············································17
2.3.1 外观检查·······························································································17
2.3.2 吹砂试验前最大功率检测·······································································17
2.3.3 吹砂试验前电安全性检测(绝缘、湿漏电流和接地连续性检测)·············17
2.3.4 吹砂试验前 EL 检测···············································································18
2.3.5 吹砂试验·······························································································19
2.3.6 吹砂试验后最大功率检测·······································································19
2.3.7 吹砂试验后电安全性检测(绝缘、湿漏电流和接地连续性检测)·············19
2.3.8 吹砂试验后 EL 检测···············································································19
2.4 总结 ···············································································································21
参考文献 ················································································································21
第 3 章 光伏组件不均匀雪载检测技术 ···································································24
3.1 光伏组件不均匀雪载试验 ···········································································24
3.2 不均匀雪载试验方法 ···················································································25
3.2.1 试验流程·······························································································26
3.2.2 不均匀雪载的压强分布和计算方法 ·························································28
3.2.3 雪载设备 ································································································35
3.3 数据分析 ·······································································································36
3.3.1 PV2~PV6 压强变化规律········································································36
3.3.2 PV2~PV6 位移量变化规律 ····································································38
3.3.3 PV7 数据分析························································································40
3.4 总结 ···············································································································40
第 4 章 光伏组件热斑耐久性试验和旁路二极管功能检测技术 ···························42
4.1 热斑的形成和光伏组件级联分类································································42
4.2 光伏组件热斑耐久性试验检测设备····························································44
4.3 晶体硅光伏组件热斑检测 ···········································································45
4.3.1 晶体硅光伏组件热斑检测流程································································45
4.3.2 晶体硅组件热斑耐久性试验结果分析······················································47
4.3.3 小结··············································································
内容摘要
本书主要介绍光伏组件典型环境检测技术,内容概括了近六年来通过技术攻关和平台建设,在国内首次建立的经认证认可委CNAS认可第三方检测技术,主要包括光伏组件箱模拟运输实验、太阳能组件不均匀雪载检测技术、光伏组件高风速砂尘检测、太阳能电池片和组件不同角度入射光性能检测、双面光伏组件I-V特性检测。以上检测技术获得国内认证单位、企业用户的广泛认可,为中国光伏企业研发满足典型户外环境光伏产品提供了检测和评测平台,促进了中国光伏产品研发和技术进步。本书同时将相关的检测技术最新国际标准进行了讲解,并结合检测结果进行了分析,具有很好的示范性。另外与以上检测技术密切相关其他常用检测技术,如光伏组件风载试验、组件热斑和二极管功能性检测技术的检测标准、检测技术和检测方法一起做了介绍。本书适合光伏组件研发、生产和检测的企业单位从业人员使用。
— 没有更多了 —
以下为对购买帮助不大的评价