• TensorFlow深度学习 深入理解人工智能算法设计
  • TensorFlow深度学习 深入理解人工智能算法设计
  • TensorFlow深度学习 深入理解人工智能算法设计
  • TensorFlow深度学习 深入理解人工智能算法设计
  • TensorFlow深度学习 深入理解人工智能算法设计
21年品牌 40万+商家 超1.5亿件商品

TensorFlow深度学习 深入理解人工智能算法设计

全新正版 极速发货

53.36 6.0折 89 全新

库存14件

广东广州
认证卖家担保交易快速发货售后保障

作者龙良曲 编

出版社清华大学出版社

ISBN9787302553335

出版时间2020-08

装帧平装

开本16开

定价89元

货号1202119821

上书时间2024-11-25

书香美美

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
目录
第1章人工智能绪论

1.1人工智能简介

1.1.1人工智能

1.1.2机器学习

1.1.3神经网络与深度学习

1.2神经网络发展简史

1.2.1浅层神经网络

1.2.2深度学习

1.3深度学习特点

1.3.1数据量

1.3.2计算力

1.3.3网络规模

1.3.4通用智能

1.4深度学习应用

1.4.1计算机视觉

1.4.2自然语言处理

1.4.3强化学习

1.5深度学习框架

1.5.1主流框架

1.5.2TensorFlow2与TensorFlow1.x

1.5.3功能演示

1.6开发环境安装

1.6.1Anaconda安装

1.6.2CUDA安装

1.6.3TensorFlow安装

1.6.4常用编辑器安装

参考文献

第2章回归问题

2.1神经元模型

2.2优化方法

2.3线性模型实战

2.4线性回归

参考文献

第3章分类问题

3.1手写数字图片数据集

3.2模型构建

3.3误差计算

3.4真的解决了吗

3.5非线性模型

3.6表达能力

3.7优化方法

3.8手写数字图片识别体验

3.8.1网络搭建

3.8.2模型训练

参考文献

第4章TensorFlow基础

4.1数据类型

4.1.1数值类型

4.1.2字符串类型

4.1.3布尔类型

4.2数值精度

4.2.1读取精度

4.2.2类型转换

4.3待优化张量

4.4创建张量

4.4.1从数组、列表对象创建

4.4.2创建全0或全1张量

4.4.3创建自定义数值张量

4.4.4创建已知分布的张量

4.4.5创建序列

4.5张量的典型应用

4.5.1标量

4.5.2向量

4.5.3矩阵

4.5.4三维张量

4.5.5四维张量

4.6索引与切片

4.6.1索引

4.6.2切片

4.6.3小结

4.7维度变换

4.7.1改变视图

4.7.2增加、删除维度

4.7.3交换维度

4.7.4复制数据

4.8Broadcasting

4.9数学运算

4.9.1加、减、乘、除运算

4.9.2乘方运算

4.9.3指数和对数运算

4.9.4矩阵相乘运算

4.10前向传播实战

第5章TensorFlow进阶

5.1合并与分割

5.1.1合并

5.1.2分割

5.2数据统计

5.2.1向量范数

5.2.2最值、均值、和

5.3张量比较

5.4填充与复制

5.4.1填充

5.4.2复制

5.5数据限幅

5.6高级操作

5.6.1tf.gather

5.6.2tf.gather_nd

5.6.3tf.boolean_mask

5.6.4tf.where

5.6.5scatter_nd

5.6.6meshgrid

5.7经典数据集加载

5.7.1随机打散

5.7.2批训练

5.7.3预处理

5.7.4循环训练

5.8MNIST测试实战

第6章神经网络

6.1感知机

6.2全连接层

6.2.1张量方式实现

6.2.2层方式实现

6.3神经网络

6.3.1张量方式实现

6.3.2层方式实现

6.3.3优化目标

6.4激活函数

6.4.1Sigmoid

6.4.2ReLU

6.4.3LeakyReLU

6.4.4tanh

6.5输出层设计

6.5.1普通实数空间

6.5.2[0,1]区间

6.5.3[0,1]区间,和为1

6.5.4[-1,1]

6.6误差计算

6.6.1均方差误差函数

6.6.2交叉熵损失函数

6.7神经网络类型

6.7.1卷积神经网络

6.7.2循环神经网络

6.7.3注意力(机制)网络

6.7.4图卷积神经网络

6.8汽车油耗预测实战

6.8.1数据集

6.8.2创建网络

6.8.3训练与测试

参考文献

第7章反向传播算法

7.1导数与梯度

7.2导数常见性质

7.2.1基本函数的导数

7.2.2常用导数性质

7.2.3导数求解实战

7.3激活函数导数

7.3.1Sigmoid函数导数

7.3.2ReLU函数导数

7.3.3LeakyReLU函数导数

7.3.4tanh函数梯度

7.4损失函数梯度

7.4.1均方误差函数梯度

7.4.2交叉熵函数梯度

7.5全连接层梯度

7.5.1单神经元梯度

7.5.2全连接层梯度

7.6链式法则

7.7反向传播算法

7.8Himmelblau函数优化实战

7.9反向传播算法实战

7.9.1数据集

7.9.2网络层

7.9.3网络模型

7.9.4网络训练

7.9.5网络性能

参考文献

第8章Keras高层接口

8.1常见功能模块

8.1.1常见网络层类

8.1.2网络容器

8.2模型装配、训练与测试

8.2.1模型装配

8.2.2模型训练

8.2.3模型测试

8.3模型保存与加载

8.3.1张量方式

8.3.2网络方式

8.3.3SavedModel方式

8.4自定义网络简介

8.4.1自定义网络层

8.4.2自定义网络

8.5模型乐园

8.6测量工具

8.6.1新建测量器

8.6.2写入数据

8.6.3读取统计信息

8.6.4清除状态

8.6.5准确率统计实战

8.7可视化

8.7.1模型端

8.7.2浏览器端

第9章过拟合

9.1模型的容量

9.2欠拟合与过拟合

9.2.1欠拟合

9.2.2过拟合

9.3数据集划分

9.3.1验证集与超参数

9.3.2提前停止

9.4模型设计

9.5正则化

9.5.1L0正则化

9.5.2L1正则化

9.5.3L2正则化

9.5.4正则化效果

9.6Dropout

9.7数据增强

9.7.1旋转

9.7.2翻转

9.7.3裁剪

9.7.4生成数据

9.7.5其他方式

9.8过拟合问题实战

9.8.1构建数据集

9.8.2网络层数的影响

9.8.3Dropout的影响

9.8.4正则化的影响

参考文献

第10章卷积神经网络

10.1全连接网络的问题

10.1.1局部相关性

10.1.2权值共享

10.1.3卷积运算

10.2卷积神经网络

10.2.1单通道输入和单卷积核

10.2.2多通道输入和单卷积核

10.2.3多通道输入、多卷积核

10.2.4步长

10.2.5填充

10.3卷积层实现

10.3.1自定义权值

10.3.2卷积层类

10.4LeNet5实战

10.5表示学习

10.6梯度传播

10.7池化层

10.8BatchNorm层

10.8.1前向传播

10.8.2反向更新

10.8.3BN层实现

10.9经典卷积网络

10.9.1AlexNet

10.9.2VGG系列

10.9.3GoogLeNet

10.10CIFAR10与VGG13实战

10.11卷积层变种

10.11.1空洞卷积

10.11.2转置卷积

10.11.3分离卷积

10.12深度残差网络

10.12.1ResNet原理

10.12.2ResBlock实现

10.13DenseNet

10.14CIFAR10与ResNet18实战

参考文献

第11章循环神经网络

11.1序列表示方法

11.1.1Embedding层

11.1.2预训练的词向量

11.2循环神经网络

11.2.1全连接层可行吗

11.2.2权值共享

11.2.3全局语义

11.2.4循环神经网络原理

11.3梯度传播

11.4RNN层使用方法

11.4.1SimpleRNNCell

11.4.2多层SimpleRNNCell网络

11.4.3SimpleRNN层

11.5RNN情感分类问题实战

11.5.1数据集

11.5.2网络模型

11.5.3训练与测试

11.6梯度弥散和梯度爆炸

11.6.1梯度裁剪

11.6.2梯度弥散

11.7RNN短时记忆

11.8LSTM原理

11.8.1遗忘门

11.8.2输入门

11.8.3刷新Memory

11.8.4输出门

11.8.5小结

11.9LSTM层使用方法

11.9.1LSTMCell

11.9.2LSTM层

11.10GRU简介

11.10.1复位门

11.10.2更新门

11.10.3GRU使用方法

11.11LSTM/GRU情感分类问题再战

11.11.1LSTM模型

11.11.2GRU模型

11.12预训练的词向量

参考文献

第12章自编码器

12.1自编码器原理

12.2FashionMNIST图片重建实战

12.2.1FashionMNIST数据集

12.2.2编码器

12.2.3解码器

12.2.4自编码器

12.2.5网络训练

12.2.6图片重建

12.3自编码器变种

12.3.1DenoisingAutoEncoder

12.3.2DropoutAutoEncoder

12.3.3AdversarialAutoEncoder

12.4变分自编码器

12.4.1VAE原理

12.4.2ReparameterizationTrick

12.5VAE图片生成实战

12.5.1VAE模型

12.5.2Reparameterization技巧

12.5.3网络训练

12.5.4图片生成

参考文献

第13章生成对抗网络

13.1博弈学习实例

13.2GAN原理

13.2.1网络结构

13.2.2网络训练

13.2.3统一目标函数

13.3DCGAN实战

13.3.1动漫图片数据集

13.3.2生成器

13.3.3判别器

13.3.4训练与可视化

13.4GAN变种

13.4.1DCGAN

13.4.2InfoGAN

13.4.3CycleGAN

13.4.4WGAN

13.4.5EqualGAN

13.4.6SelfAttentionGAN

13.4.7BigGAN

13.5纳什均衡

13.5.1判别器状态

13.5.2生成器状态

13.5.3纳什均衡点

13.6GAN训练难题

13.6.1超参数敏感

13.6.2模式崩塌

13.7WGAN原理

13.7.1JS散度的缺陷

13.7.2EM距离

13.7.3WGANGP

13.8WGANGP实战

参考文献

第14章强化学习

14.1先睹为快

14.1.1平衡杆游戏

14.1.2Gym平台

14.1.3策略网络

14.1.4梯度更新

14.1.5平衡杆游戏实战

14.2强化学习问题

14.2.1马尔科夫决策过程

14.2.2目标函数

14.3策略梯度方法

14.3.1REINFORCE算法

14.3.2原始策略梯度的改进

14.3.3带基准的REINFORCE算法

14.3.4重要性采样

14.3.5PPO算法

14.3.6PPO实战

14.4值函数方法

14.4.1值函数

14.4.2值函数估计

14.4.3策略改进

14.4.4SARSA算法

14.4.5DQN算法

14.4.6DQN变种

14.4.7DQN实战

14.5ActorCritic方法

14.5.1AdvantageAC算法

14.5.2A3C算法

14.5.3A3C实战

参考文献

第15章自定义数据集

15.1精灵宝可梦数据集

15.2自定义数据集加载

15.2.1创建编码表

15.2.2创建样本和标签表格

15.2.3数据集划分

15.3宝可梦数据集实战

15.3.1创建Dataset对象

15.3.2数据预处理

15.3.3创建模型

15.3.4网络训练与测试

15.4迁移学习

15.4.1迁移学习原理

15.4.2迁移学习实战

内容摘要
人工智能是近年来全球最为火热的研究领域之一,尤其是随着深度学习算法研究的突破,人工智能技术被应用到图片识别、机器翻译、语音助手、自动驾驶等一系列领域中,取得了靠前的智能水平。深度学习算法涵盖的内容非常前沿和广袤,国内外出版的相关书籍并不箅多,有些侧重于理论层面的推导,有些侧重于框架API的介绍,鲜有能结合深度学习算法原理和实战讲解的教材。为了使读者能够深刻理解深度学习算法精髓,本书以探索问题式叙述风格展开,从最简单的人工智能问题人手,一步步地引导读者分析和解决并发现新的问题,重温当年算法设计人员的探索之路。本书介绍了深度学习算法所需要的基础数学理论、TensorFlow框架的基本使用方法、回归问题、分类问题、反向传播算法、梯度下降箅法、过拟合、全连接网络、卷积神经网络、循环神经网络、自编码器、生成对抗网络、强化学习、迁移学习等主流和前沿知识。针对每个算法或模型,本书均详细分析了采用TensorFlow框架的实现方法,并基于多个常见的经典数据集进行了算法模型的实战,如基于MNIST和CIFAR10数据集的图片识别实战、基于IMDB数据集的文本分析实战、基于动漫头像数据集的图片生成实战和基于OpenAIGym环境的平衡杆游戏实战等。通过原理与实战结合的方式,读者可优选限度地理解算法理论,同时提升工程实现能力。本书可作为高等院校人工智能课程的教材,也可供从事人工智能、深度学习箅法研究与开发人员自学或参考。

主编推荐
本书适合初学者快速入门深度学习算法和TensorFlow框架。我们已讲故事的方式向读者一步步地介绍每个核心算法,非常详细地剖析算法原理,手把手实现每个算法实战,不但让读者能够了解算法的工作原理,更重要的是教会读者如何一步步地思考问题并解决问题。具体地,我们会介绍目前深度学习的数学原理,反向传播算法,卷积神经网络,循环神经网络,对抗生产网络,自编码器,神经网络结构搜索,图卷积网络等等一系列前沿核心算法。使读者不仅可以明白原理,还能学以致用。内容讲解细致,没有数学基础的读者也能轻松入门。

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP