目录 Foreword Preface 1 Mathematical Background 1.1 Dynamical systems 1.1.1 Vector felds and dynamical systems 1.1.2 Critical points in phase space 1.1.3 Higher-order autonomous systems 1.1.4 Dirac delta function 1.1.5 Special functions 1.1.6 Green's function 1.1.7 Boundary and initial value problems 1.2 Asymptotic behavior and stability 1.2.1 Asymptotic expansions 1.2.2 Asymptotic behavior of autonomous systems 1.2.3 Stability of autonomous systems 1.2.4 More on stability 1.3 Bifurcations 1.3.1 Instability and bifurcations 1.3.2 Saddle-node bifurcation 1.3.3 Transcritical and pitchfork bifurcations 1.3.4 Hopf bifurcation 1.3.5 Saddle-node bifurcation of a periodic orbit 1.3.6 Global bifurcation 1.4 Attractors 1.4.1 Chaotic motion and symbolic dynamics 1.4.2 Homoclinic tangles and Smale's horseshoe map 1.4.3 Poincaré return map 1.4.4 Lyapunov's exponents and entropy 1.4.5 Attracting sets and attractors 1.5 Fractals 1.5.1 Local structure of fractals 1.5.2 Operations with fractals 1.5.3 Fractal attractors in dynamical systems 1.6 Perturbations 1.6.1 Regular perturbation theory 1.6.2 Singular perturbation theory 1.7 Elements of tensor analysis 1.7.1 Transformations of coordinate systems 1.7.2 Covariant and contravariant derivatives 1.7.3 Christoffel symbols and curvature tensor 1.7.4 Integral formulas 1.8 Navier-Stokes equations for nonequilibrium gas mixture 1.8.1 Continuity,momentum and energy equations 1.8.2 Closing relations and transport coefficients 1.8.3 Boundary conditions 1.8.4 Deducing Navier-Stokes equation 1.8.5 Existence and uniqueness of solutions of the Navier—Stokes equation 1.8.6 Relativistic Navier—Stokes equation 1.9 Exercises bliography
以下为对购买帮助不大的评价