机器学习
全新正版 极速发货
¥
69.57
6.4折
¥
108
全新
库存1810件
作者周志华
出版社清华大学
ISBN9787302423287
出版时间2020-11
装帧其他
开本其他
定价108元
货号1202169628
上书时间2024-06-14
商品详情
- 品相描述:全新
- 商品描述
-
目录
目录
第1章绪论
1.1引言
1.2 基本术语
2
1.3 假设空间
1.4 归纳偏好
6
1.5发展历程
10
1.6 应用现状
13
1.7阅读材料
16
习题
19
参考文献
20
休息一会儿22
第2章模型评估与选择
23
2.1经验误差与过拟合23
2.2 评估方法
24
2.3 性能度量
28
2.4 比较检验
37
2.5偏差与方差
44
2.6 阅读材料
46
习题
48
参考文献
49
休息一会儿
51
第3章线性模型
53
3.1基本形式
53
3.2 线性回归
53
3.3对数几率回归
57
3.4线性判别分析
60
3.5多分类学习
63
3.6类别不平衡问题66
3.7阅读材料
67
习题6
9
参考文献
70
休息一会儿
第4章决策树
73
4.1 基本流程
73
4.2划分选择
75
4.3剪枝处理
79
4.4连续 与缺失值
83
4.5多变量决策树
88
4.6阅读材料
92
习题
93
参考文献
94
休息-会儿
95
第5章神经网络
5.1 神经元模型
5.2感知机与多层网络
98
5.3误差逆传播算法
101
5.4全局最小与局部极小
106
5.5其他常见神经网络
l08
5.7阅读材料
115
习题
116
参考文献
117
休息一-会儿
120
第6章支持向量
6.1间隔与支持向量
1216.2对偶问题123
6.3核函数
126
6.4软间隔与正则化129
6.5支持向量回归133
6.6 核方法
137
6.7阅读材料
139
习题
141
参考文献142
休息一会儿
145
第7章贝叶斯分类器
7.1贝叶斯决策论
147
7.2 极大似然估计
149
7.3朴素贝叶斯分类器
150
7.4半朴素贝叶斯分类器
154
7.5贝叶斯网
156
7.6EM算法
7.7阅读材料
164
习题
166
参考文献
167
休息一会儿
169
第8章集成学习
8.1个体与集成171
8.2 Boosting
173
8.3 Bagging与随机森林
8.5多样性
8.6阅读材料190
习题
192
参考文献
193
休息一会儿
196
第9章聚类
9.1聚类任务
9.2性能度量
197
9.3距离计算
199
9.4原型聚类
202
9.5密度聚类
9.6层次聚类
214
9.7
阅读材料
217
习题
220
参考文献
休息一-会儿
224
第10章降维与度量学习
225
10.1 k近邻学习
10.2 低维嵌入
226
10.3
主成分分析
229
10.4核化线性降维
232
10.5流形学习
234
10.6 度量学习
10.7阅读材料
240
习题
242
参考文献
243
休息一会儿
246
第11章特征选择与稀疏学习
11.1子集搜索与评价
247
11.2
过滤式选择
249
11.3包裹式选择
250
11.4嵌入式选择与L正则化
252
11.5稀疏表示与字典学习
11.6压缩感知
257
11.7
阅读材料
习题
262
参考文献
休息一会儿
第12章计算学习理论
12.1
基础知识267
12.2 PAC学习
268
12.3有限假设空间270
12.4
VC维
273
12.5 Radenacher复杂度
12.6稳定性
279
12.7阅读材料
284
习题
287
参考文献
289
休息一会儿
290
第13章半监督学习.
13.1未标记样本
293
13.2生成式方法295
13.3半监督SVM2958
13.4
图半监督学习
300
13.5
基于分歧的方法304
13.6半监督聚类307
13.7阅读材料311
习题
313
参考文献
314
休息一会儿
317
第14章概率图模型.
14.1
隐马尔可夫模型
319
14.2马尔可夫随机场
322
14.3 条件随机场325
14.4学习与推断
328
14.5近似推断
14.6话题模型
3317
14.7阅读材料
习题
3341
参考文献
342
休息一会儿345
第15章
15.1基本概念
347
15.2序贯覆盖
349
15.3剪枝优化
352
15.4一阶规则学习354
15.5归纳逻辑程序设计
357
15.6阅读材料
363
习题
365
参考文献
366
休息一会儿
369
第16章强化学习
16.1
任务与奖赏
16.2 K描臂赌博机
16.3 有模型学习
16.4免模型学习
16.5值函数近似
16.6模仿学习
16.7阅读材料
习题
参考文献
休息一会儿
附录
A矩阵
B优化
C概率分布
后记
417
索引419
内容摘要
\\\\\\\\\\\\\\\"机器学习是计算机科学的重要分支领域.本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面.全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等.每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索.本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考.\\\\\\\\\\\\\\\"
— 没有更多了 —
以下为对购买帮助不大的评价