目录 Contents Preface iii Ⅰ Getting Started 1 1. Foundations of Matrix Analysis 3 1.1 Vector Spaces 3 1.3 0perations with Matrices 7 1.3.1 Inverse of a Matrix 8 1.3.2 Matrices and Linear Mappings 9 1.3.3 0perations with Block-Partitioned Matrices 9 1.4 Trace and Determinant of a Matrix 10 1.5 Rank and Kernel of a Matrix 11 1.6 Special Matrices 12 1.6.1 Block Diagonal Matrices 12 1.6.2 Trapezoidal and Triangular Matrices 13 1.6.3 Banded Matrices 13 1.7 Eigenvalues and Eigenvectors 14 1.8 Similarity Transformations 16 1.9 The Singular Value Decomposition (SVD) 18 1.10 Scalar Product and Norms in Vector Spaces 19 1.11 Matrix Norms 23 1.11.1 Relation between Norms and the Spectral Radius of a Matrix 27 1.11.2 Sequences and Series of Matrices 28 1.12 Positive Definite, Diagonally Dominant and M-matrices 29 1.13 Exercises 32 2. Principles of Numerical Mathematics 35 2.1 Well-posedness and Condition Number of a Problem 35 2.2 Stability of Numerical Methods 39 2.2.1 Relations between Stability and Convergence 42 2.3 A priori and a posteriori Analysis 43 2.4 Sources of Error in Computational Models 45 2.5 Machine Representation of Numbers 47 2.5.1 The Positional System 47 2.5.2 The Floating-point Number System 48 2.5.3 Distribution of Floating-point Numbers 51 2.5.4 IEC/IEEE Arithmetic 51 2.5.5 Rounding of a Real Number in its Machine Representation 52 2.5.6 Machine Floating-point Operations 54 2.6 Exercises 56 II Numerical Linear Algebra 59 3. Direct Methods for the Solution of Linear Systems61 3.1 Stability Analysis of Linear Systems 62 3.1.1 The Condition Number of a Matrix 62 3.1.2 Forward a priori Analysis 64 3.1.3 Backward a priori Analysis 67 3.1.4 A posteriori Analysis 68 3.2 Solution of Triangular Systems 69 3.2.1 Implementation of Substitution Methods 69 3.2.2 Rounding Error Analysis 71 3.2.3 Inverse of a Triangular Matrix 71 3.3 The Gaussian Elimination Method (GEM) and LU Factorization 72 3.3.1 GEM as a Factorization Method 76 3.3.2 The Effect of Rounding Errors 80 3.3.3 Implementation of LU Factorization 81 3.3.4 Compact Forms of Factorization 82 3.4 0ther Types of Factorization 83 3.4.1 LDMT Factorization 83 3.4.2 Symmetric and Positive Definite Matrices: The Cholesky Factorization 84 3.4.3 Rectangular Matrices: The QR Factorization 86 3.6 Computing the Inverse of a Matrix 93 3.7 Banded Systems 94 3.7.1 Tridiagonal Matrices 95 3.7.2 Implementation Issues 96 3.8 Block Systems 97 3.8.1 Block LU Factorization 98 3.8.2 Inverse of a Block-partitioned Matrix 98 3.8.3 Block Tridiagonal Systems 99 3.9 Sparse Matrices 101 3.9.1 The Cuthill-McKee Algorithm 102 3.9.2 Decomposition into Substructures 104 3.9.3 Nested Dissection 107 3.10 Accuracy of the Solution Achieved Using GEM 107 3.11 An Approximate Computation of K(A) 110 3.12 Improving the Accuracy of GEM 113 3.12.1 Scaling 114 3.12.2 Iterative Refinement 115 3.13 Undetermined Systems 116 3.14 Applications 119 3.14.1 Nodal Analysis of a Structured Frame 119 3.14.2 Regularization of a Triangular Grid 122 3.15 Exercises 125 4. Iterative Methods for Solving Linear Systems 127 4.1 0n the Convergence of lterative Methods 127 4.2 Linear Iterative Methods 130 4.2.1 Jacobi, Gauss-Seidel and Relaxation Methods 131 4.2.2 Convergence Results for Jacobi and Gauss-SeidelMethods 133 4.2.3 Convergence Results for the Relaxation Method 135 4.2.4 A priori Forward Analysis 136 4.2.5 Block Matrices 137 4.2.6 Symmetric Form of the Gauss-Seidel and SOR Methods 137 4.2.7 Implementation Issues 139 4.3 Stationary and Nonstationary Iterative Methods 140 4.3.1 Convergence Analysis of the Richardson Method 141 4.3.2 Preconditioning Matrices 143 4.3.3 The Gradient Method 150 4.3.4 The Conjugate Gradient Method 155 4.3.5 The Preconditioned Conjugate Gradient Method 160 4.3.6 The Alternating-Direction Method 162 4.4 Methods Based on Krylov Subspace Iterations 163 4.4.1 The Arnoldi Method for Linear Systems 166 4.4.2 The GMRES Method 169 4.4.3 The Lanczos Method for Symmetric Systems 171 4.5 The Lanczos Method for Unsymmetric Systems 172 4.6 Stopping Criteria 175 4.6.1 A Stopping Test Based on the Increment 176 4.6.2 A Stopping Test Based on the Residual 178 4.7 Applications 178 4.7.1 Analysis of an Electric Network 178 4.7.2 Finite Difference Analysis of Beam Bending 181 4.8 Exercises 183 5. Approximation of Eigenvalues and Eigenvectors 187 5.1 Geometrical Location of the Eigenvalues 187 5.2 Stability and Conditioning Analysis 190 5.2.1 A priori Estimates 190 5.2.2 A posteriori Estimates 194 5.3 The Power Method 196 5.3.1 Approximation of the Eigenvalue of Largest Module 196 5.3.2 Inverse Iteration 199 5.3.3 Implementation Issues 200 5.4 The QR Iteration 203 5.5 The Basic QR Iteration 205 5.6 The QR Method for Matrices in Hessen berg Form 207 5.6.1 Householder and Givens Transformation Matrices 208 5.6.2 Reducing a Matrix in Hessen berg Form 211 5.6.3 QR Factorization of a Matrix in Hessen berg Form 213 5.6.4 The Basic QR Iteration Starting from Upper Hessen berg Form 214 5.6.5 Implementation of Transformation Matrices 216 5.7 The QR Iteration with Shifting Techniques 218 5.7.1 The QR Method with Single Shift 219 5.7.2 The QR Method with Double Shift 221 5.8 Computing the Eigenvectors and the SVD of a Matrix 224 5.8.1 The Hessen berg lnverse Iteration 224 5.8.2 Computing the Eigenvectors from the Schur Form of a Matrix 225 5.8.3 Approximate Computation of the SVD of a Matrix 226 5.9 The Generalized Eigenvalue Problem 227 5.9.1 Computing the Generalized Real Schur Form 228 5.9.2 Generalized Real Schur Form of Symmetric-Definite Pencils 229 5.10 Methods for Eigenvalues of Symmetric Matrices 230 5.10.1 The Jacobi Method 231 5.10.2 The Method of Sturm Sequences 233 5.11 The Lanczos Method 236 5.12 Applications 239 5.12.1 Analysis of the Buckling of a Beam 239 5.12.2 Free Dynamic Vibration of a Bridge 241 III Around Functions and Functionals 249 6. Rootfinding for Nonlinear Equations251 6.1 Conditioning of a Nonlinear Equation 252 6.2 A Geometric Approach to Rootfinding 254 6.2.1 The Bisection Method 254 6.2.2 The Methods of Chord, Secant and Regula Falsi and Newtons Method 257 6.2.3 The Dekker-Brent Method 262 6.3 Fixed-point Iterations for Nonlinear Equations 263 6.3.1 Convergence Results for Some Fixed-point Methods 266 6.4 Zeros of Algebraic Equations 267 6.4.1 The Homer Method and Deflation 268 6.4.2 The Newton-Horner Method 269 6.4.3 The Muller Method 272 6.5 Stopping Criteria 275 6.6 Post-processing Techniques for Iterative Methods 278 6.6.1 Aitkens Acceleration 278 6.6.2 Techniques for Multiple Roots 280 6.7 Applications 282 6.7.1 Analysis of the State Equation for a Real Gas 282 6.7.2 Analysis of a Nonlinear Electrical Circuit 283 7. Nonlinear Systems and Numerical Optimization287 7.1 Solution of Systems of Nonlinear Equations 288 7.1.1 Newtons Method and Its Variants 289 7.1.2 Modified Newtons Methods 291 7.1.3 Quasi-Newton Methods 294 7.1.4 Secant-like Methods 294 7.1.5 Fixed-point Methods 297 7.2 Unconstrained Optimization 300 7.2.1 Direct Search Methods 301 7.2.2 Descent Methods 306 7.2.3 Line Search Techniques 308 7.2.4 Descent Methods for Quadratic Functions 310 7.2.5 Newton-like Methods for Function Minimization 313 7.2.6 Quasi-Newton Methods 314 7.2.7 Secant-like methods 315 7.3 Constrained Optimization 317 7.3.1 Kuhn-Tucker Necessary Conditions for Nonlinear Programming 319 7.3.2 The Penalty Method 321 7.3.3 The Method of Lagrange Multipliers 322 7.4.1 Solution of a Nonlinear System Arising from Semiconductor Device Simulation 325 7.4.2 Nonlinear Regularization of a Discretization Grid 329 8. Polynomiallnterpolation333 8.1 Polynomial Interpolation 334 8.1.1 The Interpolation Error 335 8.1.2 Drawbacks of Polynomial Interpolation on Equally Spaced Nodes and Runges Counterexample 336 8.1.3Stability of Polynomial Interpolation 338 8.2 Newton Form of the Interpolating Polynomial 339 8.2.1 Some Properties of Newton Divided Differences 341 8.2.2 The Interpolation Error Using Divided Differences 343 8.3 Piecewise Lagrange Interpolation 344 8.4 Barycentric Lagrange Interpolation 347 8.5 Hermite-Birkoff Interpolation 349 8.6 Extension to the Two-Dimensional Case 351 8.6.1 Polynomial Interpolation 351 8.6.2 Piecewise Polynomial Interpolation 352 8.7 Approximation by Splines 356 8.7.1 Interpolatory Cubic Splines 357 8.7.2 B-splines 361 8.8 Splines in Parametric Form 365 8.8.1 Bezier Curves and Parametric B-splines 367 8.9 Applications 370 8.9.1 Finite Element Analysis of a Clamped Beam 371 8.9.2 Geometric Reconstruction Based on Computer To mographies 374 8.10 Exercises 376 9 Numerical Integration379 9.1 Quadrature Formulae 379 9.2 Interpolatory Quadratures 381 9.2.1The Midpoint or Rectangle Formula 381 9.2.2 The Trapezoidal Formula 383 9.2.3 The Cavalieri-Simpson Formula 385 9.3 Newton-Cotes Formulae 386 9.4 Composite Newton-Cotes Formulae 391 9.5 Hermite Quadrature Formulae 394 9.6 Richardson Extrapolation 396 9.6.1 Romberg Integration 398 9.7 Automatic Integration 399 9.7.1 Non Adaptive Integration Algorithms 400 9.7.2 Adaptive Integration Algorithms 402 9.8 Singular Integrals 406 9.8.1 Integrals of Functions with Finite Jump Discontinuities 406 9.8.2 Integrals oflnfinite Functions 407 9.8.3 Integrals over Unbounded Intervals 409 9.9 Multidimensional Numericallntegration 411 9.9.1 The Method of Reduction Formula , 411<
以下为对购买帮助不大的评价