• 代数数论
21年品牌 40万+商家 超1.5亿件商品

代数数论

全新正版 极速发货

56.19 6.3折 89 全新

库存27件

广东广州
认证卖家担保交易快速发货售后保障

作者黎景辉

出版社高等教育出版社

ISBN9787040464832

出版时间2016-09

装帧平装

开本其他

定价89元

货号1201457172

上书时间2024-09-04

曲奇书店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
目录

第零章预备知识
记号
0.1 局部化
0.2 代数扩张
0.3 态射扩张
0.4 Galois 扩张
0.5 迹和范
0.6 有限域
0.7 过滤
0.8 无穷扩张
0.9 特征标
习题
部分数域论
章理想
1.1 Dedekind 环
1.2 理想的分解
1.3 Dedekind 环扩张
1.4 理想的迹和范
1.5 判别式
1.6 Hilbert 分歧理论
1.7 理想类群
1.8 Picard 群
1.9 Grothendieck 群
习题
第二章格
2.1 Minkowski 理论
2.2 加性结构
2.3 乘性结构
2.4 理想估值
2.5 L-函数
2.6 密度
习题
第三章完备域
3.1 赋值域
3.2 赋值域扩张
3.3 完备域扩张
3.4 局部数域
3.5 形式群
3.6 数域的赋值
习题
第四章类群
4.1 加元环
4.2 理元群
4.3 理元类群
4.4 理想
习题
第二部分同调论
第五章上同调群
5.1 有限群的同调群
5.2 张量积
5.3 Tate 定理
5.4 射影有限群的同调群
5.5 类成
5.6 域的上同调
5.7 Kummer 扩张
习题
第六章局部域的上同调群
6.1 无分歧扩张
6.2 局部互反律
6.3 分圆域
习题
第七章理元类的上同调群
7.1 理元的上同调群
7.2 计算H1
7.3 计算H2
7.4 整体互反律
7.5 Weil 群
7.6 注记
习题
第八章对偶定理
8.1 有限群的同调群
8.2 射影有限群的上同调群
8.3 谱序列
8.4 成对偶模
8.5 类成对偶
8.6 局部对偶
8.7 整体对偶
8.8 Pi 和Ш
8.9 Poitou-Tate 序列
8.10 后记: 上同调理论和数论
习题
第三部分p 进理论
第九章p 进分析
9.1 Cp
9.2 滤子
9.3 球完备性
9.4 Banach 空间
9.5 Fréchet 空间
9.6 算子空间
9.7 p 进插值
9.8 p 进测度
习题
第十章赋值环
10.1 光滑环
10.2 离散赋值环
10.3 Witt 环
10.4 Hensel 环
10.5 Cohen 环
10.6 分歧群
10.7 单位群
10.8 优选交换扩张
10.9 全分歧Zp 扩张
10.10 范域
10.11 接近化
习题
第十一章Galois 表示
11.1 晶体
11.2 CK
11.3 非交换1 上同调
11.4 在GLn(Cp) 的上同调
11.5 φ 模
11.6 φ Г模
11.7 幂级数环
11.8 周期环
……
11.10 p 进Galois 表示
习题
第十二章L-函数
12.1 调和分析
12.2 特征标
12.3 Z 积分
12.4 Hecke L-函数
12.5 Artin L-函数
习题
第四部分补充材料
附录: 代数数论百年历史回顾及分期初探
A.1 奠基时代
A.2 波—— 类域论
A.3 第二波—— p 进世界
A.4 第三波—— 代数群的调和分析
A.5 第四波—— 算术代数几何学
A.6 第五波—— 世界大同伦
索引

内容摘要
本书是为数学系研究生讲当代的基础代数数论,亦合适数学系三四年级本科生学习。全书分为三部分:数域论、同调论和p进理论。在数域论中讲述代数数论的中心思想:局部-整体数论;在同调论中用同调代数方法讲类域论的核心结构:类成;在p进理论中,我们从无穷维p进泛函分析开始,然后讨论赋值环结构、晶体和Galois表示。全书由Dedekind环开始,而以Dedekind环的L-函数结束。代数数论在各种电子信息工程中的应用与日俱增,本书的内容是使用代数数论的人推荐的知识。本书适合大学数学系的本科生和研究生阅读参考。

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP