肺结节检测机器视觉技术
全新正版 极速发货
¥
40.62
6.0折
¥
68
全新
库存3件
作者何志权,曹桂涛
出版社化学工业出版社
ISBN9787122400345
出版时间2022-01
装帧平装
开本16开
定价68元
货号1202725323
上书时间2024-07-02
商品详情
- 品相描述:全新
- 商品描述
-
目录
第1章肺结节检测与深度学习001
1.1肺结节检测的背景与发展现状001
1.2CAD系统研究现状004
1.2.1肺实质分割算法研究005
1.2.2肺结节检测算法研究008
1.3深度卷积神经网络009
1.3.1深度卷积神经网络的发展009
1.3.2卷积神经网络的结构010
参考文献013
第2章肺结节检测原理与技术015
2.1医学影像知识015
2.1.1计算机断层扫描技术015
2.1.2肺结节的医学影像特征018
2.2肺结节检测评价指标020
2.2.1真/假阳性率020
2.2.2竞争性能指标022
2.2.3自由响应操作特性曲线022
2.3深度学习方法与传统检测方法的优劣势023
2.4现有检测技术介绍025
2.4.1多流框架学习025
2.4.2迁移学习026
2.4.3无/半/自监督学习027
2.4.4多任务学习029
2.5常用数据集030
参考文献034
第3章基于目标检测的U-Net构建与肺结节候选检测036
3.1肺实质分割037
3.1.1图像预处理037
3.1.2肺实质初定位039
3.1.3肺实质轮廓修补039
3.1.4灰度值归一化042
3.2数据预处理与增强043
3.2.1图像裁剪043
3.2.2数据增强044
3.3R2U-Net网络构建045
3.3.1U-Net框架修正045
3.3.2ResNet残差单元047
3.3.3RPN网络的anchor机制049
3.3.4R2U-Net网络050
3.4模型性能优化051
3.4.1损失优化051
3.4.2难分类样本挖掘052
3.4.3非极大值抑制053
3.4.4K-折交叉验证054
3.5实验设置与结果分析056
3.5.1实验设置056
3.5.2结果分析056
参考文献061
第4章基于多流多尺度融合的U-Net构建与肺结节候选检测063
4.1R2U-Net网络框架优化064
4.1.1多尺度输入融合算法064
4.1.2多流输出融合算法065
4.1.3非线性卷积模块066
4.1.4MS2U-Net网络介绍067
4.2非极大值抑制改进算法068
4.3实验结果与分析069
4.3.1实验设置069
4.3.2结果分析070
参考文献080
第5章注意力机制与特征金字塔与肺结节候选检测082
5.1基于通道-空间注意力机制的网络设计083
5.1.1U-Net网络结构083
5.1.2U-SENet网络构建085
5.2U-SENet网络应用于候选肺结节检测086
5.2.1数据增强086
5.2.2优化损失函数087
5.2.3通道-空间注意力机制介绍088
5.2.4权重初始化091
5.3特征金字塔网络结构092
5.4特征金字塔网络应用于目标检测095
5.5多尺度3D特征金字塔网络及肺结节检测098
5.6实验结果与分析100
5.6.1U-SENet实验结果与分析101
5.6.2MFDM实验结果与分析102
参考文献104
……
内容摘要
肺结节检测对肺癌的预防、早期筛查及早期诊断尤为重要,基于肺癌影像上的肺结节检测分析是预防肺癌的有效途径。随着LDCT技术的普及以及人们对自身健康的重视,胸部CT图像数据呈现爆炸式增长,极大地加重了放射科医生的工作负担,同时也增加了病情判断的难度。本书进行了肺结节检测的自动化研究,全面总结深度学习在肺结节检测当中的研究成果,提出了多种有效的创新性的深度学习网络框架和检测思路。本书适合从事医学图像处理,尤其是基于深度学习的肺结节检测方面研究的学者和科研人员、医学工作者阅读。
— 没有更多了 —
以下为对购买帮助不大的评价