• 机器学习系统设计
21年品牌 40万+商家 超1.5亿件商品

机器学习系统设计

全新正版 极速发货

30.61 5.2折 59 全新

仅1件

广东广州
认证卖家担保交易快速发货售后保障

作者(美)戴维·朱利安(David Julian) 著;李洋 译

出版社机械工业出版社

ISBN9787111569459

出版时间2017-06

装帧平装

开本16开

定价59元

货号1201519209

上书时间2024-06-14

曲奇书店

已实名 已认证 进店 收藏店铺

   商品详情   

品相描述:全新
商品描述
作者简介
戴维·朱利安(David Julian),数据分析员、信息系统咨询顾问和培训讲师。他目前正致力于Urban ECOlogical Systems和Blue Smart Farms(http://www.bluesmartforms.com.au)的机器学习项目,该项目旨在发现和预测温室作物虫害。

目录
译者序
前言
章机器学习的思维
1.1人机界面
1.2设计原理
1.2.1问题的类型
1.2.2问题是否正确
1.2.3任务
1.2.4统一建模语言
1.3总结
第2章工具和技术
2.1Python与机器学习
2.2IPython控制台
2.3安装SciPy栈
2.4NumPy
2.4.1构造和变换数组
2.4.2数学运算
2.5Matplotlib
2.6Pandas
2.7SciPy
2.8Scikit-learn
2.9总结
第3章将数据变为信息
3.1什么是数据
3.2大数据
3.2.1大数据的挑战
3.2.2数据模型
3.2.3数据分布
3.2.4来自数据库的数据
3.2.5来自互联网的数据
3.2.6来自自然语言的数据
3.2.7来自图像的数据
3.2.8来自应用编程接口的数据
3.3信号
3.4数据清洗
3.5数据可视化
3.6总结
第4章模型——从信息中学习
4.1逻辑模型
4.1.1一般性排序
4.1.2解释空间
4.1.3覆盖空间
4.1.4PAC学习和计算复杂性
4.2树状模型
4.3规则模型
4.3.1有序列表方法
4.3.2基于集合的规则模型
4.4总结
第5章线性模型
5.1最小二乘法
5.1.1梯度下降
5.1.2正规方程法
5.2logistic回归
5.3多分类
5.4正则化
5.5总结
第6章神经网络
6.1神经网络入门
6.2logistic单元
6.3代价函数
6.4神经网络的实现
6.5梯度检验
6.6其他神经网络架构
6.7总结
第7章特征——算法眼中的世界
7.1特征的类型
7.1.1定量特征
7.1.2有序特征
7.1.3分类特征
7.2运算和统计
7.3结构化特征
7.4特征变换
7.4.1离散化
7.4.2归一化
7.4.3校准
7.5主成分分析
7.6总结
第8章集成学习
8.1集成学习的类型
8.2Bagging方法
8.2.1随机森林
8.2.2极端随机树
8.3Boosting方法
8.3.1AdaBoost
8.3.2梯度Boosting
8.4集成学习的策略
8.5总结
第9章设计策略和案例研究
9.1评价模型的表现
9.2模型的选择
9.3学习曲线
9.4现实世界中的案例研究
9.4.1建立一个推荐系统
9.4.2温室虫害探测
9.5机器学习一瞥
9.6总结

内容摘要
机器学习模型不能给出准确结果的原因有很多。从设计的角度来审视这些系统,我们能够深入理解其底层算法和可用的优化方法。本书为我们提供了机器学习设计过程的坚实基础,能够使我们为特定问题建立起定制的机器学习模型。我们可能已经了解或使用过一些为解决常见问题的商用机器学习模型,例如垃圾邮件检测或电影分级,但是要着手于解决更为复杂的问题,则其重点是让这些模型适用于我们自己特定的需求。

精彩内容
PREFACE前    言机器学习是计算世界所见的优选趋势之一。机器学习系统具有意义深远且令人兴奋的能力,能够在各种应用领域为人们提供重要的洞察力,从具有开创性的挽救生命的医学研究到宇宙基础物理方面的发现,从为我们提供更健康、更清洁的食物到互联网分析和建立经济模型,等等。事实上,就某种意义而言,这项技术在我们的生活中已经无所不在。要想进入机器学习的领域,并且对其具有充分的认知,就必须能够理解和设计服务于某一项目需要的机器学习系统。本书的主要内容章从机器学习的基础知识开始,帮助你用机器学习的范式进行思考。你将学到机器学习的设计原理和相关模型。第2章讲解了Python中众多针对机器学习任务的程序包。本章会让你初步了解一些大型库,包括NumPy、SciPy、Matplotlib和Scilit-learn等。第3章讲解了原始数据可能有多种不同格式,其数量和质量也可能各不相同。有时,我们会被数据淹没;而有时,我们希望从数据中榨取最后一滴信息。数据要成为信息,需要有意义的结构。本章我们介绍了一些宽泛的主题,如大数据、数据属性、数据源、数据处理和分析等。第4章在逻辑模型中探索了逻辑语言,并创建了假设空间映射;在树状模型中,我们发现其具有广泛作用域并易于描述和理解;在规则模型中,我们讨论了基于有序规则列表和无序规则集的模型。第5章介绍了线性模型,它是使用最广泛的模型之一。线性模型是众多不错非线性技术的基础,例如,支持向量机(SVM)和神经网络。本章还研究了机器学习最常用的技术,创建线性回归和logistic回归的假设语句。第6章介绍了机器学习最强大的人工神经网络算法。我们将看到这些网络如何成为大脑神经元的简化模型。第7章讨论了特征的不同类型,即定量特征、有序特征和分类特征。我们还将详细学习如何结构化和变换特征。第8章解释了集成机器学习背后的动机和成因,其来源于清晰的直觉并具有丰富的理论历史基础。集成机器学习的类型在于模型本身,以及围绕着三个主要问题(如何划分数据、如何选择模型、如何组合其结果)的考量。第9章着眼于一些设计策略,以确保你的机器学习系统最优。我们将学习模型选择和参数调优技术,并将所学知识应用于一些案例研究之中。阅读前的准备工作你需要有学习机器学习的意愿,并需要下载安装Python 3。Python 3的下载地址是:https://www.python.org/downloads/ 。本书的读者对象本书的读者包括数据学家、科学家,或任何好奇的人。你需要具备一些线性代数和Python编程的基础,对机器学习的概念有基本了解。

—  没有更多了  —

以下为对购买帮助不大的评价

此功能需要访问孔网APP才能使用
暂时不用
打开孔网APP