医学影像深度学习
全新正版 极速发货
¥
33.12
5.6折
¥
59
全新
库存4件
作者粘永健 主编,肖晶晶 戚婧 副主编
出版社清华大学出版社
ISBN9787302635550
出版时间2023-07
装帧平装
开本16开
定价59元
货号1203004302
上书时间2024-06-11
商品详情
- 品相描述:全新
- 商品描述
-
作者简介
(1)粘永健,陆军军医大学生物医学工程与影像医学系副教授,硕士生导师,长期从事医学影像人工智能的教学和科研工作,讲授本科生的“医学影像人工智能”以及博士研究生的“数字医学与人工智能”等课程,获校级教学成果一等奖,获评校级优秀教师、教学标兵。现任重庆市数字医学学会常务理事,重庆市计算机学会高性能计算专委会委员。先后主持国家与省部级项目5项,近5年在国际人工智能领域知名期刊上发表SCI论文5篇(通讯作者),授权发明专利4项、软件著作权3项。
(2)肖晶晶,陆军军医大学第二附属医院生物医学信息研究与应用中心主任,长期从事医学影像人工智能的教学和科研工作,讲授本科生的“医学影像设备学”等课程。先后主持国家与省部级项目5项,近5年发表SCI论文10余篇,授权发明专利3项。
(3)戚婧,解放军总医院医学大数据研究中心博士研究生,主要研究方向为医学影像人工智能。近5年发表SCI论文3篇,主持省部级项目1项,曾获第十六届中国研究生电子设计竞赛全国一等奖,获评陆军军医大学优秀研究生。
目录
第1章 人工智能之深度学习
1.1人工智能简介
1.1.1基本概念
1.1.2发展历程
1.2深度学习简介
1.3深度学习在医学影像处理中的应用
1.4本章小结
参考文献
第2章 医学成像简介
2.1X射线成像
2.1.1成像原理
2.1.2影像特点
2.1.3临床应用
2.2CT成像
2.2.1成像原理
2.2.2影像特点
2.2.3临床应用
……
内容摘要
本书首先简要介绍人工智能与深度学习的发展历程与应用、临床各种成像以及深度学习环境;然后重点围绕医学影像分类、目标检测与分割三大基本任务展开讲解,阐述每种任务的基本概念与临床意义,介绍典型的深度神经网络,给出医学影像数据集的构建、网络的训练、测试以及性能评价方面的具体方法;最后介绍医学影像深度学习领域常用的公开数据集。此外,针对三大基本任务给出六个案例。本书可作为高等医科院校或高等院校医学相关专业高年级本科生和研究生的教材或参考书,也可供相关领域的科研人员、工程技术人员参考。
主编推荐
(1)紧密围绕医学影像这一对象展开论述,充分考虑临床医学与工程学的交叉融合,兼顾基础性、实践性与前沿性。
(2)基于PyTorch进行深度学习模型的构建,与科技前沿技术接轨,可便捷地使用近期新的深度模型。
(3)内容聚焦于医学影像分类、目标检测与分割三大任务,系统讲解每种任务的实现过程,能够覆盖绝大多数临床应用场景。
(4)每章内容都配有PPT、视频讲解与案例展示,并给出源代码、数据集,便于读者自主学习,达到理论与实践相结合的效果。
(5)扫描目录上方的二维码,即可下载教学大纲和PPT课件;扫描各章首页的二维码,即可观看教学视频;扫描案例首页的二维码,即可下载源代码和数据集。
— 没有更多了 —
以下为对购买帮助不大的评价